

I T

Outline

Energy impact of building airtightness

UK adaptation

Inclusion of Pulse in SAP 10.2

Space for improvement

[1]. D. Etheridge A perspective on fifty years of natural ventilation research Building and Environment. Volume 91, September 2015, Pages 51-60

The University of Nottingham

Department of Architecture and Built Environment

09 December 2024

7

International context

Table 1 Summary of infiltration predicting models

Model	Complexity	Main use	Zonal definition	Valida- tion
LBL	Simplified	Infiltration prediction	Single	Yes
AIM-2	Simplified	Infiltration prediction	Single	Yes
AIDA	Complex	Infiltration prediction	Single	
CONTAM	Complex	Pollutant transport	Multi-zone	Yes
DOMVENT3D	Complex	Stock modelling	Single	No
09 December 2024	Departmen University	t of Architecture and Bui of Nottingham	It Environment,	

ment:

Current Potential

31

EU Dire

2002/91/EC

69

9

Standard Assessment Procedure (SAP)

Dwelling type: Date of assessmen Date of certificate: Reference number Total floor area: Detached house 02 February 2007 [dd mmmm yyyy] 0000-0000-0000-0000-0000 166 m² 17 Any Street, Any Town, County, YY3 5XX **SAP** explained This home's performance is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO_2) emissions. The calculation is based on the energy Energy Efficiency Rating Environmental Impact (CO2) Ratir balance, taking into account a range of factors that contribute to energy efficiency: Current Potential (92-100) 🛕 materials used for construction of the dwelling thermal insulation of the building fabric 55-68 air leakage, ventilation characteristics of 139.54 (39-54) the dwelling, and ventilation equipment efficiency and control of the heating system(s) solar gains through openings of the . EU Dire England & Wales **England & Wales** 2002/91/EC dwelling The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills will be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment. the fuel used to provide space and water heating, ventilation and lighting energy for space cooling, if applicable Estimated energy use, carbon dioxide (CO₂) emissions and fuel costs of this home renewable energy technologies Current Potential Energy Use 453 kWh/m² per year 178 kWh/m2 per year Carbon dioxide emissions 13 tonnes per year 4.9 tonnes per year Lighting £81 per year £65 per year Department of Architecture and Built Environment Heating £1173 per year £457 per year 09 December 2024 Hot wate £219 per year £104 per year The University of Nottingham

	UK adaptation-SAP 10.2	
Ste	ep 1: Input of airtightness measurement	
Air p	permeability value, AP ₅₀ , (m³/h/m²)	7)
Air p	permeability value, AP ₄ , (m ³ /h/m ²)	' a)
lf bas lf bas	sed on air permeability value at 50 Pa, then $(18) = [(17) \div 20] + (8)$ sed on air permeability value at 4 Pa, then $(18) = [0.263 \times (17a)^{0.924}] + (8)$ (1	8)
lf no Air p bein Num	air permeability test data, then (18) = (16) permeability value applies if a pressurisation test has been done, or a design or specified air permeability is og used nber of sides on which dwelling is sheltered (1	9)
Shel	Iter factor $(20) = 1 - [0.075 \times (19)] =$ (2	0)
Infiltr	ration rate incorporating shelter factor $(21) = (18) \times (20) = $	1)
Source	e: The Government's Standard Assessment Procedure for Energy Rating of Dwellings. Version 10.2	
09 Dec	cember 2024 Department of Architecture and Built Environment The University of Nottingham	14

UK adaptation-SAP 10.2

Step 1: Input of airtightness (Pulse: 0.263×(AP4)^{0.924})

AP50 Bin	Count	Average n	Average AP4 multiplier	AP4 Predicted Average
0-1	625	0.72	6.36	0.12
1-2	2943	0.68	5.65	0.30
2-3	18620	0.67	5.50	0.50
3-4	72584	0.66	5.46	0.69
4-5	134585	0.66	5.46	0.88
5-6	40330	0.64	5.18	1.10
6-7	14171	0.63	5.02	1.33
7-8	5286	0.63	4.94	1.55
8-9	2073	0.62	4.89	1.78
9-10	1146	0.62	4.92	2.00
10-11	248	0.61	4.79	2.24
11-12	111	0.62	4.82	2.44
12-13	69	0.62	4.95	2.65
13-14	38	0.62	4.89	2.83
14-15	24	0.62	4.89	3.04
15-16	18	0.63	4.99	3.21
16-17	13	0.62	4.97	3.55
Total	292,884	0.64	5.16	1.78

- Based on a sample of 100 UK homes
- Validation against the n exponent profile of 293k blower door tests

09 December 2024

Department of Architecture and Built Environment The University of Nottingham

15

UK adaptation-SAP 10.2

Step 2: Shelter factor

A side of a building is sheltered if there are adjacent buildings or tree-height hedges which effectively obstruct the wind on that side of the building.

Air permeability value, AP_{50}, $(m^3/h/m^2)$	(17)	
Air permeability value, AP ₄ , (m³/h/m²)	(17a)	
If based on air permeability value at 50 Pa, then (18) = [(17) \div If based on air permeability value at 4 Pa, then (18) = [0.263 x	20] + (8) (17a) ^{0.924}] + (8) (18)	
If no air permeability test data, then (18) = (16) Air permeability value applies if a pressurisation test has been being used	done, or a design or specified air permeability is	
Number of sides on which dwelling is sheltered	(19)	
Shelter factor	$(20) = 1 - [0.075 \times (19)] =$ (20)	
Infiltration rate incorporating shelter factor	(21) = (18) × (20) = (21)	
Source: The Government's Standard Assessment Procedure for Energy R	Rating of Dwellings. Version 10.2	
9 December 2024 Environment The University of Nottingham		

	UK	adap	otati	on-S	SAP '	10.2														
\sim		-						Table	U2: W	ind spe	ed (m/	s) for c	alcula	tion of	infiltra	tion ra	ite			
							Reg	gion	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
							0	UK average	5.1	5.0	4.9	4.4	4.3	3.8	3.8	3.7	4.0	4.3	4.5	4.7
C	ton 2.1	Mind	fact	or			1	Thames	4.2	4.0	4.0	3.7	3.7	3.3	3.4	3.2	3.3	3.5	3.5	3.8
3	step 5.	vina	Idu	JI			2	South East England	4.8	4.5	4.4	3.9	3.9	3.6	3.7	3.5	3.7	4.0	4.1	4.4
							3	Southern England	5.1	4.7	4.6	4.3	4.3	4.0	4.0	3.9	4.0	4.5	4.4	4.7
	Infiltration ra	ate modifi	ed for m	onthly w	ind spee	d:	4	South West England	6.0	5.6	5.6	5.0	5.0	4.4	4.4	4.3	4.7	5.4	5.5	5.9
	Monthly ave	e <mark>rage wi</mark> r	nd speed	l from Ta	able U2		5	Severn Wales / Severn England	4.9	4.6	4.7	4.3	4.3	3.8	3.8	3.7	3.8	4.3	4.3	4.6
		Jan	Feb	Mar	Apr	May	6	Midlands	4.5	4.5	4.4	3.9	3.8	3.4	3.3	3.3	3.5	3.8	3.9	4.1
	(22) -	(22)	(22)	(22)	(22)	(22)	7	West Pennines Wales / West Pennines England	4.8	4.7	4.6	4.2	4.1	3.7	3.7	3.7	3.7	4.2	4.3	4.5
	(22) _m –	(22)1	(22)2	(22)3	(22)4	(22)5	8	North West England / South West Scotland	5.2	5.2	5.0	4.4	4.3	3.9	3.7	3.7	4.1	4.6	4.8	4.7
	Wind Eacto	r (22a)	9 Borders Scotland / 5.2 5.2 5.0 4.4 4.1 3.8 3.5 3.5 3.9 4.2 4.6 4.7 Borders England																	
		(ZZU)	m - (ZZ)	n · -	-		10	North East England	5.3	5.2	5.0	4.3	4.2	3.9	3.6	3.6	4.1	4.3	4.6	4.8
	(22a) _m =	(22a) ₁	$(22a)_{2}$	$(22a)_{3}$	(22a) ₄	(22a) ₅	11	East Pennines	5.1	5.0	4.9	4.4	4.3	3.8	3.8	3.7	4.0	4.3	4.5	4.7
	() III	X 71	12	(70	V 74	10	12	East Anglia	4.9	4.8	4.7	4.2	4.2	3.7	3.8	3.8	4.0	4.2	4.3	4.5
							13	Wales	6.5	6.2	5.9	5.2	5.1	4.7	4.5	4.5	5.0	5.7	6.0	6.0
	Adjusted int	filtration ra	ate (allov	vina for s	shelter ar	nd wind sp	14	West Scotland	6.2	6.2	5.9	5.2	4.9	4.7	4.3	4.3	4.9	5.4	5.7	5.4
							15	East Scotland	5.7	5.8	5.7	5.0	4.8	4.6	4.1	4.1	4.7	5.0	5.2	5.0
	(22b) _m =	$(22b)_1$	$(22b)_2$	$(22b)_{3}$	$(22b)_4$	$(22b)_{5}$	16	North East Scotland	5.7	5.8	5.7	5.0	4.6	4.4	4.0	4.1	4.6	5.2	5.3	5.1
							17	Highland	6.5	6.8	6.4	5.7	5.1	5.1	4.6	4.5	5.3	5.8	6.1	5.7
							18	Western Isles	8.3	8.4	7.9	0.6	0.1	0.1	5.6	5.6	0.3	7.3	7.7	7.5
S	burce: The Gove	rnment's St	andard Ass	sessment P	rocedure fo	or ⊨nergy Ra	19	Shatland	7.9	0.3	7.9	7.5	6.6	0.1 6.4	5.5	5.0	0.4	1.5	7.8	1.5
09	December 2024	Envi	artment of A ronment Th	e University	of Nottingha	am	20	Northern Ireland	5.4	5.3	5.0	4.7	4.5	4.1	3.9	3.7	4.2	4.6	5.0	5.0

17

UK adaptation-SAP 10.2

Step 4: Effective air change rate

Effective air change rate is then determined based on the ventilation type:

- Balanced mechanical ventilation with heat recovery
- Balanced mechanical ventilation without heat recovery
- Whole house extract ventilation or positive input ventilation from outside
- Natural ventilation or whole house positive input ventilation from loft

+Chimneys, flues, fans, PSVs,

Then the infiltration heat loss is calculated using

0.33NVDT

09 December 2024

Department of Architecture and Built Environment The University of Nottingham

UK adaptation-SAP 10.2

Comparison with LBL

Factors	LBL	UK-SAP
Airtightness	Yes	Yes
Wind	Yes	Yes
Temperature difference	Yes	No
Shelter factor	No	Yes
Building height	Yes	Yes
Terrain class	Yes	No
Leakage distribution	Yes (Assumption)	No

IT

09 December 2024

UK adaptation-SAP 10.2

Department of Architecture and Built Environment The University of Nottingham

Home Energy Model Consultation

	Very sheltered [City]	Sheltered [Urban]	Normal [Country with scattered windbreaks]	Exposed [Open flat country]
House: 1-storey	41.2	30.7	20.6	13.7
House: 2-storey	34.0	25.4	17.0	11.3
Flat (Storeys 1-5)	34.6	25.8	17.3	11.5
Flat (Storeys 6-10)	30.2	22.5	15.1	10.1
Flat (Storeys 11+)	29.3	19.9	13.7	9.3

Table 1 - Divisors used to convert the N50 pressure test figure into an infiltration rate

09 December 2024

Space for improvement

When the ratio is favoured

- Divide-by-rule should be based on UK data.
- Divide-by-rule for LPP, should have its own equivalent value, rather than taking up to 50 Pa.
- Enhanced understanding of the leakage distribution of UK homes.
- Perhaps the temperature difference should be considered too.

An academic perspective

• A better leakage-infiltration correlation should be considered.

```
09 December 2024
```

21

Department of Architecture and Built Environment The University of Nottingham

