

Energy implication of using gas-phase air cleaners in residential & office buildings

Introduction and background

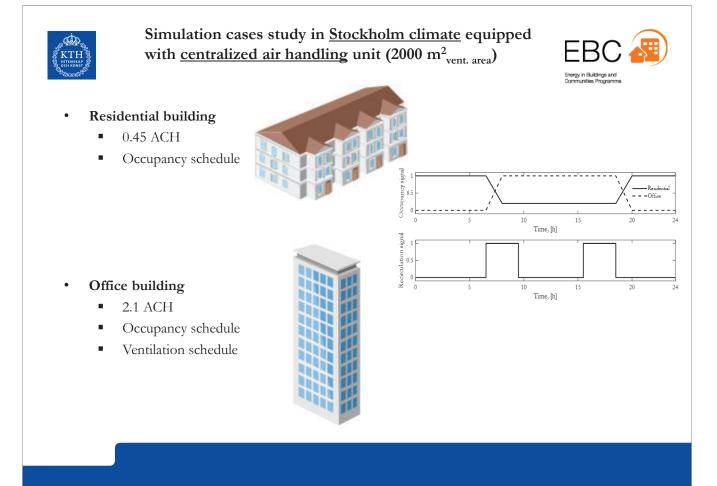
- Ventilation systems are important for maintaining a healthy and comfortable indoor environment.
- In cold climates, ventilation systems contribute to **approximately 30% of building heat losses**.
- Indoor emissions and outdoor pollutants affect indoor air quality and need to be controlled.
- **Gas-phase air cleaning** as an extension of ventilation can help maintain acceptable indoor air quality while reducing **energy use**.

Investigated parameters

- Heating demand of a ventilated building
- Indoor TVOC level (with 60% capturing efficiency)
- Indoor CO₂ level as a monitoring parameter
- Possibility of air recirculation when air cleaner is integrated.

Simulation case

- Newly constructed or renovated buildings
- Older buildings without heat recovery ventilation
- Residential and office cases with various ACH


Energy simulation using TRNSYS

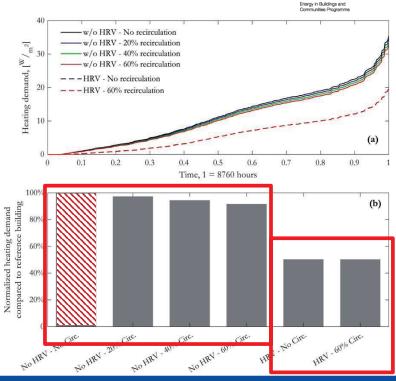
Supply Fan

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)

Type33c

Air pollutant	тиос				CO2	
Source	Outdoor	Occupants	Interior furnishing		Outdoor	Occupants
Value	µgr.m ⁻³	mgr.h ⁻¹ .person ⁻¹	µgr.m- ³ h-1		mgr.m ⁻³	gr.h ⁻¹ .person ⁻¹
Value	110	6.3	120		720	120
	Ind	oor and outde	oor emissi	on rate	es	
Location	Reference			TVOC concentration µg.m ⁻³		
Europe	Report EUR 14449 EN. 1992			Comfort range < 300 Multifactorial exposure range < 3000 Discomfort range < 25000 Toxic range > 25000 Individual indoor climate < 200 Good indoor climate < 300 Satisfactory indoor climate < 600		
Finland	Finnish Society of IAQ and Climate. 2000					
Germany	Federal Environment Agency of Germany			Hygienically safe < 1000 Hygienically noticeable < 3000 Hygienically alarming < 10000 Hygienically unacceptable > 1000		
Germany	Seifert B.			300		
Gu	ideline valu	ues for indo	or TVOC	conc	entration	
BRUARY 21, 2025	s	ASAN SADRIZADEH (SSAD				

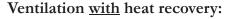

Residential building (0.45 ACH)

Ventilation with heat recovery:

- **The recirculation** effect on heating demand is negligible!
- ➢ Air cleaner implementation might not be that effective!

Ventilation <u>without</u> heat recovery:

- **The recirculation** effect on heating demand is small!
- ➢ Air cleaner implementation might reduce building heating demand!


HRV: Heat Recovery Ventilation

FBC


Office building (2.1 ACH)

- > The recirculation effect on heating demand is notable compared to the residential buildings!
- > This is the case for both with and without heat recovery!
- Air cleaner implementation <u>is</u> effective!

Thus ACH is an important parameter that needs to be considered.

 $^{/}8\eta^{]}$

TVOC

200

150

100

50

Ian Feb Mar Apr May

 $[{}^{\mu g}_{m}/{}^{3}]$

IVOC concentration

25

200

150

100

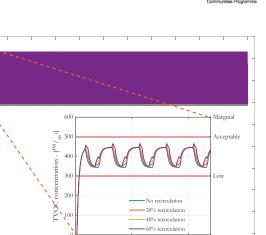
50

Jan

Feb

Mar

Apr


Residential building: Impact of air recirculation on TVOC concentration ($<500 \ \mu g/m^3$)

Marginal

Acceptable

Dec

Nov

June July Month With air recirculation (and air cleaner)

Time, [h

Aug

Sed

Nov

Dec

Oct

Recirculation does not result in increased TVOC level

TVOC concentration is within the acceptable range

June

Time, [h]

July Aug

Month

Without air recirculation

Oct

Sed

600

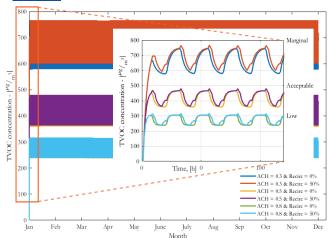
400

30

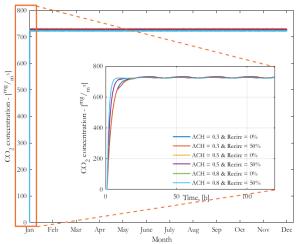
200

100

May


 $[\epsilon^m/_{BH}]$.

7/10 7/21


Residential building: Impact of air recirculation and ACH on TVOC & CO_2 concentration

TVOC concentration with 0 and 50% air recirculation

- High ACH (>0.5) maintains TVOC concentration within an acceptable range, regardless of recirculation level
- Thus, adding air cleaner and recirculation is beneficial to reduce building heating demand

Co2 concentration with 0 and 50% air recirculation

Recirculation % and ACH do not changes CO_2 level since the main CO_2 source is the outdoor air.

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)



Conclusion:

- This study examines the effect of gas-phase air cleaners on building heating demand.
- The study also explores indoor **concentrations of TVOC and CO₂** when gas-phase air cleaners are used.
- Different parameters were also discussed, such as ACH, air recirculation, ventilation, and occupancy schedule on indoor TVOC and CO₂ levels.
- Increasing recirculation rate reduced heating demand in the office building more than in residential.
- 60% recirculation rate reduced heating demand by 9% in residential and 24% in the office building.
- Integrating gas-phase air cleaner and increasing recirculation rate during rush hours of mornings and evenings kept TVOC and CO₂ concentrations acceptable.
- Indoor CO₂ concentration value was affected less than TVOC's by increasing the recirculation rate.
- Higher ACH minimizes the impact of recirculation rate on TVOC and CO₂ levels.

Sasan Sadrizadeh ssad@kth.se

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)