

SCOPE

Scope

This European Standard describes the methods to calculate the ventilation air flow rates for buildings

This European Standard applies to buildings with:

- Mechanical ventilation systems (mechanical exhaust, mechanical supply or balanced system).
- Passive duct ventilation systems for residential and low-rise non-residential buildings;
- Combustion appliances;
- Windows opening by manual operation;
- Kitchens where cooking is for immediate use (including restaurants)
- This European Standard is applicable to hybrid systems combining mech systems in residential and low-rise non-residential buildings.

This European Standard applies to buildings smaller than 100 m and rooms where vertical air temperature difference is smaller than 15 K.

The results provided by the standard are:

the air flow rates entering or leaving a ventilation

the air flow rates required to be distributed by the mechanical ventilation system, if present

- This European Standard is not applicable to:
- Buildings with kitchens where cooking is not for immediate us
- Buildings with automatic windows (or openings)
- Buildings with industry process ventilation.
- The definition of ventilation and airtightness requirements (as indoor air quality, heating and cooling, safet fire protection...) is not covered by this standard.
- The following information can be found in other standards and technical reports
- guidance to estimate pressure drops in ducts (CR 14378:2002)
- Table 1 shows the relative position of this standard within the EN EPB package of standards

Part of the European Energy Performance of Buildings Standards - Ventilation (EN 16798

family) (former EN 15242)

Energy performance of buildings - Ventilation for buildings - Part 7 : calculation methods for the determination of air flow rates in buildings including infiltration (Modules M5-5)

Objective of the standard:

- To calculate the air exchange rates in a building
 - To include them in the energy performance calculation.

The scope specifies the limits of the standard

METHOD 1: THE EQUILIBRIUM PRESSURE MODEL

1 equation with 1 unknown variable...

But not linear

A dynamic method for calculating air infiltration in buildings.

- Based on a **mass balance equation** to determine pressure distribution.
- Requires inputs on:
 - Pressure distribution across the building envelope.
 - Leakage characteristics and airflow paths.

5

Pressure coefficient depends on:

- Its height on the facade
- · The facade exposure to wind

Wind speed

B.3.3.3 Pressure coefficients associated to an air flow path

Table B.7 gives C_p values for ventilation zone that can be cross-ventilated ($f_{cros} = 1$) depending on the height of the air flow path on the façade and its shielding class.

Height of air flow path on façade	Shielding class	Dimensionless wind pressures \mathcal{C}_p				
		Windward Cp1	Leeward Cp2	Roof (depending on slope) Cp3		
				< 10°	10°-30°	> 30°
Low h _{path} < 15 m	Open	+ 0,50	- 0,70	- 0,70	- 0,60	- 0,20
	Normal	+ 0,25	- 0,50	- 0,60	- 0,50	- 0,20
	Shielded	+ 0,05	- 0,30	- 0,50	- 0,40	- 0,20
Medium	Open	+ 0,65	- 0,70	- 0,70	- 0,60	- 0,20
15 ≤ h _{path} < 50 m	Normal	+ 0,45	- 0,50	- 0,60	- 0,50	- 0,20
	Shielded	+ 0,25	- 0,30	- 0,50	- 0,40	- 0,20
High ħ _{path} ≥50 m	Open	+ 0,80	- 0,70	- 0,70	- 0,60	- 0,20

IOTE The wind pressure coefficients given are valid for a wind sector of approx. \pm 60° to the facade axis. The rind direction is not considered more specifically.

WHY EPM IS MORE ACCURATE THAN SIMPLIFIED METHODS?

Provides dynamic infiltration rates, often calculated hourly.

Considers real-time factors like:

- Wind speed and direction.
- Indoor and outdoor temperature differences.
- Aligns with methodologies from airflow simulation tools like CONTAM.

Method used at least in France and Czech Republic

Include multizone calculation

• Huge impact on actual airflow rate crossing the envelope

Include simplified calculation both for heating and cooling seasons

• All existing equations are meant to be safe-side for heating period

