Submitted by Maria.Kapsalaki on Mon, 11/16/2015 - 17:22
Interior wooden surfaces have the capacity to buffer the maxima and minima of relative humidity (RH) indoors. Especially in high performance buildings, where high airtightness levels as well as high indoor air quality (IAQ) are required, there is great potential for energy savings by reducing the mechanical ventilation demand. The last decade, the moisture buffer phenomena has been widely researched. Relevant findings showed that the moisture buffering effect is reduced when the ventilation rates increase.
Submitted by Maria.Kapsalaki on Thu, 05/28/2015 - 12:55
We propose a new approach for measuring air infiltration rates in buildings. The method belongs to the class of tracer gas techniques but, unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations.
Submitted by Maria.Kapsalaki on Fri, 10/25/2013 - 19:42
Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres.
The impact of unintentional air flows on the performance of ventilation units with heat recovery is discussed on the basis of single room ventilation units. Assuming an external short circuit (outdoor) and internal (inside the ventilation unit) air leakages, which lead to internal short circuits, a model is developed and characteristic numbers for ventilation efficiency, efficiency of heating load reduction and effectiveness of electrical energy use are derived.
One of the significant factors affecting the quality of air in the built environment, particularly in the context of hot humid climates, is the design and implementation of the air-conditioning and mechanical ventilation system. While most building regulations would incorporate minimum ventilation requirements al design, it is often difficult to quantitatively measure the adequacy of such ventilation provision in insitu buildings.
A number of single tracer gas techniques (decay, step-up, homogeneous constant emission,inlet pulse and homogeneous pulse) suitable for measuring the local mean ages of air in multizonebuildings exist, each having their advantages and drawbacks. The characteristics of thedifferent available techniques are compared from theoretical and practical points of view. Thehomogeneous pulse technique has not been experimentally validated before. This techniquerelies on pulses of tracer gas being injected into the different zones in amounts, which areproportional to the zone volumes.
The present paper deals with one of the most important mechanisms of inter-zone mass and energy transfer, namely the buoyancy-driven flows through stairwells that connect the floors of buildings. To further investigate these phenomena, experimental as well as theoretical studies have been carried out. A series of experiments have been performed in order to study the airflow through a typical stairwell that connects the two individual zones of a two-storey house. Airflow rates between the two zones were measured using a single tracer gas decay technique.