This research was to assess the performance of air infiltration, the corresponding energy consumption, indoor contaminant level for residential buildings in Harbin, a typical city in the severe cold region of China. Based on questionnaire survey and field measurements, the prototypical apartment building includes its physical structure, air leakage and life style of occupants has been determined. Then unsteady-state numerical simulations were carried out by the use of COMIS.
Single- and double-section manufactured homes were instrumented in 2001-2003 to measure continuous energy usage and air infiltration with respect to the environmental conditions of a windy cold dry climate. The test site near Arlington, Wyoming, USA is ideal for testing the energy (and structural) performance of manufactured housing due to the naturally occurring high winds (in excess of 35 m/s annually) and temperature extremes (+35 to -35C). Tests included tracer gas monitoring, pressurized leakage tests, and infrared (IR) video scans.
In conventional construction, the ventilation air enters a building through a combination of ‘desired’ pathways, via opened apertures, such as a window, vents, and ‘undesired’ pathways, via cracks such as around external openings, joints between building
A method was developed to estimate annual air infiltration rates in houses from measured data (building envelope air tightness, wind speeds, indoor and outdoor air temperatures). It was applied to 6 houses and the results showed a close correlation with the results from existing air filtration models.
Air infiltration through the exterior envelope of a residential building impacts significantly on the heating energy consumption and cost, especially in a cold climate such as Montreal's. Therefore to renovate existing houses to the level of new well-built houses in terms of airtightness will lead to a reduction of the heating energy costs. By considering the life-cycle energy consumption and the initial cost of renovation, and the CO2 tax credits, the paper estimates the cost-effectiveness of this type of renovation.
The increased sensibility, as far as the environmental demands are concerned, has intensified the research which aims at minimizing the energy consumption in buildings as well. In order to accomplish this task, new concepts and developments are necessary. Among those, the Second Skin Facades can play an important role. A simulation using the simulation code Simulink was set up.
Ventilation is essential for the maintenance of good indoor air quality, although there is evidence to suggest that energy loss through uncontrolled or unnecessary air infiltration is excessive. In this study; estimates are presented for air change (ventilation and infiltration) energy use in non-industrial buildings for 13 countries. Various methods are used for the estimates, but they are mainly based on calculating the total annual enthalpy change needed for the conditioning of air. The potential for reduced energy use by improved ventilation control is also briefly reviewed.
The low-slope roofs of ten cold storage buildings in the Dallas area were examined visually and thermo graphically (Tobiasson and Korhonen 1985) from above and below. Two inch (51 mm) diameter cores were taken to verify infrared findings and to determine moisture contents for estimating wet thermal resistances (Tobiasson et al. 1991 ). Twelve inch (0.3 m) square specimens of many of the insulations were removed for laboratory studies of their thermal properties and structure.
A field measurement study of the airtightness of 73 - less than 5 year old - French dwellingswas led between 1999 and 2000. Buildings have been selected and classified according to theconstruction structure, the thermal insulation and the occupancy mode. Using a fandepressurizationtechnique, we assessed the air leakage rate of each dwelling with twodepressurization tests. Meanwhile quantifying air leakage rates, we observed qualitatively themost frequent locations of air leakage paths using a smoke detection method and infraredthermography.