Gives a summary of the existing types of air infiltration measurement techniques and instrumentation using tracer gases. Describes automated air infiltration instrumentation used by researchers in the US, Canada, the UK, Denmark, Sweden and Switzerland. The equipment can operate in the decay mode, constant flow mode and the constant concentration mode.
In a modern residence with reduced air infiltration, a problem may arise if the fresh air requirement is left to natural leakage. The article discusses this problem, and describes techniques for measuring air leakage and typical results. The contaminants which define the need for ventilation are described and the case for controlled ventilation systems (and possibly heat recovery devices) is made. Areas for further research are recommended.
Measures air infiltration and tightness of Swedish houses using the tracer gas technique and the fan pressurisation technique. Uses a previously developed model correlating air tightness and infiltration to evaluate the performance of Swedish homes. Shows that it is difficult to achieve the recommended minimum ventilation rate according to the Swedish Building Code by relying on natural air infiltration. Most new homes do, however meet the Code's stringent air tightness requirements. A comparison with American houses show that Swedish homes are very tight.
Presents the latest results of air infiltration research in Finland. The aim is to increase the knowledge of the influences of air infiltration on energy consumption, ventilation and indoor climate. Briefly describes the principles of a calculation model for predicting the interconnection between airtightness and air change rate. Describes improvement of air tightness in Finnish buildings, with special attention to construction details. Discusses possibilities of draughtless and controlled fresh air intake through the building envelope.
Reports on a comparative study of residential infiltration as predicted by computer model and as measured in the Mobile Infiltration Test Unit (MITU) as well as in selected test houses, both occupied and unoccupied. Sensitivity analyses were also conducted on each parameter contained in the model against data obtained from MITU.
Reports measurements on air transport through homes made by a committee working a Dutch Standard on Heating Load Calculation similar to DIN 4701, but taking account of air infiltration losses through joints and cracks between glazing, window-frame and facade construction. Describes the measuring method applied. Tables air leakage coefficients c and flow exponents, n ,of a number of flats and single family houses. Also tables c and n values of cracks according to type of construction and material, use of weather strips and measuring institute.
Describes an energy audit being developed at LBL to determine economically optimal retrofits for residential buildings, based on actual, on-site measurements of key indices of the house. Measurements are analyzed on a microprocessor and retrofit combinations compatible with minimum life-cycle cost and occupant preferences are then determined. An important element of this audit is its treatment of infiltration.
Assesses the efficacy of an engineered mechanical ventilation system in controlling indoor humidity in one of the HUDAC Mark XI houses. Develops a mathematical model of the home, which is used to demonstrate the interaction between outdoor humidity, infiltration and ventilation rates, and indoor moisture generation and their influence on indoor humidity levels. Discusses the operating effectiveness of the rotary heat exchanger and the energy saved through its use.
Measures the air infiltration in individual rooms of a one-storey airtight house, using a special tracer gas measurement technique. Concludes that the overall ventilation rate was very low for the test house, although it had mechanical ventilation (exhaust fan). States that the best way of getting adequate ventilation is to install a ventilation system with built-in routes where fresh air can enter the building. This should either be balanced ventilation system or an exhaust fan system with special vents to the outside for supplying fresh air.
Notes emerging importance of airtightness and preparation of `Air Infiltration Handbook' by Sweden. Discusses the work of the Air Infiltration Centre under the auspices of the International Energy Agency. Reports on second AIC conference hosted by Sweden in September 1981. Discusses main topics presented at the conference dominated by the need for `controlled ventilation' and the problem of measurement.