Measures houses with energy efficient designs in Eugene, Oregon and Rochester (NY) for effective leakage area using blower door fan pressurization. Determines air change rates by tracer gas decay analysis. Makes fan pressurization measurements on 13 new houses in the San Francisco Bay area that have been partially sealed with polymeric foam sealant. Measures a similar group of 13 unsealed houses as a control. Uses the results of thesemeasurements in conjunction with an infiltration model developed at LBL to predict average annual and heating season infiltration rates.
Descibes tests conducted by the Pacific Gas and Electric (PGE) and the Bonneville Power Administration (BPA) to evaluate cost effectiveness of certain retrofits. 20 houses in Walnut Creek CA underwent an air infiltration reduction program, simi
Describes a project carried out by the Bonneville Power Administration where 18 houses at its Midway substation in central Washington were retrofitted and the results monitored for a 3 year period. The houses were divided into 3 groups. During
Briefly reviews definitions of airtightness, sources of leakage in buildings and describes the "blower door" method of measuring air leakage. Describes typical results obtained, names and addresses of some manufacturers of blower doors and the difficulty in relating air leakage results to air infiltration rates. Briefly discusses other methods of testing for airtightness.
Describes air leakage and tracer gas (SF6) measurements made in 42 Scottish houses. Finds that leakage in the "test" (better insulated) houses are on average 10% higher than that in the "control" houses. About 40% of the total leakage rate (at a pressure difference of 50 Pa) flows into houses through thefloor boards and the air-bricks under the crawl spaces. Tracer gas measurements indicate that average leakage rates with closed windows lie between 0.52-1.65 air changes per hour. Opening a window can increase the number of air changes by a factor of 2 to 5.
Describes the installation and use of the Gadzco blower door, as part of a house doctor's program for identifying source of air leakage before retrofitting. Discusses advantages and drawbacks of this particular type of blower door.
Describes the Mobile Infiltration Test Unit (MITU) and its instrumentation, including some preliminary tests of the individual measurement systems. MITU has a completely automated data acquisition system that records air infiltration rates, surface pressures and weather as half hour averages. Theshell of the tracker is well sealed and the quantity ,type and distribution of leakage area is controlled using removable leakage panels in 16 window openings.
Notes initial airtightness requirements in SBN 1980 and discusses various forms of ventilation. Discusses how tightness testing can reveal location and magnitude of leaks. Gives theoretical method of calculating air leakage flow and relates this to practical measurement. Considers different alternatives such as pressurising the building and combining tightness testing with thermography. Discusses 1980 building regulations and what buildings ought to be tested. Lists critical points of a building and measures which can contribute to good airtightness.
Assesses the impact of energy conservation retrofits on the indoor air quality of residential buildings, through a field monitoring project in which air leakage, air exchange rates and indoor air pollutants are measured before and after retrofit. Uses a mobile laboratory to make detailed on-site measurements of air exchange rates and concentrations of pollutants in 2 houses, and measures effective leakage area in 7 other houses. Impact on indoor air quality of the energy conserving retrofits seem to be minimal.
Describes a study of indoor air quality in 12 retrofitted houses of the Bonneville Power Administration (BPA) Midway Substation Residential Community, undertaken by LBL and BPA. Measures effective leakage areas and average concentrations of nitrogen dioxide, formaldehyde and radon before and after retrofit. Finds average reduction in leakage area of 32%. None of the pollutants measured before or after retrofit reached levels exceeding existing guidelines.