Turbulent force flow in an airblast storage room.

Forced air circulation in a storage room either with freezing/cooling or controlled atmosphere is usually turbulent because a high air change rate is generally required. The interaction between the turbulent air flow and the product layers plays an important role in the performance of the storage room. In this paper, a homogenous model based on the Brinkman-Forchheimer-extended Darcy equation for both fluid and porous layer is described, in association with the standard k-e turbulence model.

Influence of various factors on the predictions furnished by CFD in cross-ventilation simulations.

The results of various numerical simulations of wind induced flows through large openings in a room are presented. The study is parametric on the sizes and relative positions of the openings and the wind direction. Various grid densities have been used. Grid independency for the presented results is demonstrated. Validation of the numerical approach is performed using measurements on a test cell with a single opening. The influence of the inflow wind profile is studied. It is shown that different flow patterns are induced within the dwelling when different profiles are assumed.

A study on the prediction of the thermal environment in a large glass covered atrium using natural ventilation.

In predicting the thermal environment of an indoor space affected seriously by the outdoor weather like an atrium using natural ventilation, it is essential to grasp the impact of the external outdoor weather precisely. This report describes the result of the analysis of the outdorr and indoor region including solar radiation analysis considering the date and hour, latitude and longitude taking the atrium under construction in Kyoto as an example.

Application of wind tunnel experiment and CFD simulation on estimation of wind environment inside and outside a large-scale building complex with an atrium space.

For a large-scale building complex planned to be built in urban area, airflow around buildings and airflow inside a ventilated atrium of the building complex were estimated by CFO (Computational Fluid Dynamics) simulation, and wind and thermal environment were evaluated. The accuracy of CFO simulation was assessed by comparison with wind tunnel experiment. It was found that CFO tends to underestimate the air velocity near the ground surface compared with the results of wind tunnel experiment.

Experiments on evaporative emissions in ventilated rooms.

In many new buildings the indoor air quality is affected by emissions of volatile materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary layer at the surface-air-interface. Experiments at different velocity levels were performed in a full-scale ventilated chamber to investigate the influence of local airflow on the evaporative emission fr-0m a surface.

Modelling three dimensional gravity-induced natural convection buoyant plumes.

The aim of this study was to ascertain the validity of using computational fluid dynamics (CFD) techniques to predict the behaviour of three dimensional gravity induced natural convection buoyant plumes from a vertical heated cylinder in a large quiescent enclosure. The calculated velocity distributions and turbulence quantities over the cylinder were compared to a wide range of experimental measurements. The laminar boundary layer on an isothermal vertical plate was also modelled. The CFX4.

Non-passive particle dispersion in a displacement ventilated room - a numerical study.

Health effects caused by aerosol air pollutants in the breathing air is a main target for occupational health investigations. The effects of aerosol particles on health usually depend on the dose of particulate matter (PM:) retained at various locations of the respiratory tract. Displacement ventilation has been proved to be an effective ventilation system for the removal of passive pollutants in many buildings. The question is often asked about the performance of non-passive particle removal in a room ventilated by displacement ventilation.

CFD simulation of airflow and temperature field in room with convective heat source.

CFD simulation of airflow and temperature field in a heated room has been described in the paper. The tracking of pollutant particle movement is also presented here. The comparisons between computation and experiment show good and acceptable agreement. It can be concluded that CFD prediction can capture the main features of convective flow and provide satisfactory results. It can be seen that the thermal wall jet created by radiator greatly influences airflow pattern, temperature and pollutant particle distribution in the heated room.

Numerical study of the effectiveness of atrium smoke exhaust systems.

This paper discusses the numerical study of the effectiveness of atrium smoke exhaust systems. This study is part of a project initiated by A SH RAE and the National Research Council of Canada (NRCC), in which both physical and numerical techniques were employed to determine the effectiveness of such systems and to develop guidelines for their design. This paper presents numerical predictions obtained using a computational fluid dynamics (CFD) model and compares the numerical results with the experimental data obtained from tests performed in this project.

Pages