Indoor air quality measurements in 35 schools of South- Western Europe

The ClimACT project has been developed under the priority axis “Low Carbon Economy” of the Interreg SUDOE program. It aims to support the transition to a low carbon economy in schools. Environmental audits addressing energy and water consumptions, waste management, travels to school, procurements and green spaces have been carried out in 38 pilots schools of Portugal, Spain, France and Gibraltar. Indoor air quality and ventilation measurements were also achieved. The concentrations of 9 aldehydes and 10 selected VOCs were measured from passive sampling in two classrooms of each school.

Presentation of a national consultative body on ventilation issues: actors, working groups and projects overview

Indoor environment and indoor air quality (IAQ) are considered as subjects of major concern: as we build more and more energy efficient and airtight buildings, the conflicting issues of energy efficiency, adverse health effects and discomfort become more relevant. Significant rates of malfunctions of ventilation systems are still observed among new constructions.

Development and test of quality management approach for ventilation and indoor air quality in single-family buildings

The “VIA-Qualité” project (2013-2016) aims at developing quality management (QM) approaches (ISO 9001) on ventilation and indoor air quality (IAQ), for low-energy, single-family buildings. The goal of these QM approaches is to improve both ventilation and IAQ actual in-situ performance. The main benefits of those approaches are to: 1-Improve ventilation system performance from design to implementation; 2-Limit indoor internal pollution sources, monitoring building materials selection and design regarding the outdoor pollution sources; 3-Improve final users understanding. 

The effect of outdoor pollution and ventilation on Indoor Air Quality

The importance of reducing the ingress of outdoor pollution into the indoor environment is becoming increasingly important as concerns rise regarding the acute and chronic health effects of air pollution. In general, people in developed countries spend typically 90% or more of their time indoors, with the most susceptible individuals, such as the elderly and those with pre-existing medical conditions, spending almost all of their time indoors.

Determining the venting efficiency of simple chimneys for buoyant plumes

We present preliminary results from an examination of the capture and venting of a buoyant plume by a chimney. The aim is to enable improved management of indoor pollutant sources – for instance, the plume rising from a cooking pan in a kitchen or a cooking fire in a hut. Using the principle of dynamic similarity, we precisely and controllably model the behaviour of indoor plumes by using saline solutions ejected into an enclosure containing freshwater.

Indoor Air Quality and Thermal Comfort, in Irish Retrofitted Energy Efficient Homes

Indoor air quality and thermal comfort was measured in 14 three-bedroom, semi-detached, cavity wall naturally-ventilated homes during the winter following an energy efficient retrofit. As part of the energy retrofit, homes received new windows and doors, an upgraded heating system, attic insulation, and wall vents, as well as pumped beaded wall insulation into three external walls.

Characterising the actual performance of domestic mechanical ventilation and heat recovery systems

This paper describes the findings and recommendations of a meta-study examining the actual in-use performance of whole-house mechanical ventilation heat recovery systems (MVHR) installed in 54 low energy dwellings in the UK, as part of a national research programme. The performance of the systems is assessed using monitored data on indoor air quality (temperature, relative humidity, CO2) and energy use, cross-related with actual experiences of operating these systems through resident surveys.

Method development for measuring volatile organic compound (VOC) emission rates from spray foam insulation (SPF) and their interrelationship with indoor air quality (IAQ), human health and ventilation strategies

The polyurethane foam industry is projected to reach a worldwide value of up to $74bn by 2022 and with airtightness of new and retrofitted properties continually increasing, an important question arises: what is the impact of these materials on the indoor air quality (IAQ), occupants’ health and indoor environment?

Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review of the existing literature, to establish a link between ventilation rate and key indoor air pollutants. Design characteristics of a mechanical ventilation system such as supply/exhaust air flow, system and design of supply and exhaust outlets were considered.

Pollutant exposure of the occupants of dwellings that complies with the Spanish indoor air quality regulations

The Spanish Technical Building Code establishes the criteria for indoor air quality fixing minimum and constant ventilation rates per local. Currently, there is a proposal to modify the regulations so that the IAQ criteria becomes more useful by setting it based on average concentrations of CO2 and accumulated CO2 in the habitable rooms. However, the indoor average concentration is not the average concentration at which the occupants are exposed.

Pages