Ventilation rates of two communicating low-rise buildings as affected by terrain roughness.

Describes an analytical model for the prediction of ventilation rates and internal temperatures as influenced by the combined effects of heat dissipation inside industrial buildings and natural wind action. Applies this to a two span low building equipped with a natural ventilation system. Results emphasize the relative importance of thermal and dynamic variables including wind incidence, terrain roughness, and the role of the opening in the internal partition wall.

A study of a probalistic model of wind induced ventilation.

There are several reports on studies of wind tunnel experiments and calculations on the response of air flow at an opening against the periodic variation of wind velocity and pressure. In these studies, the fluctuating components of natural wind velocity have been treated definitely. In this paper, theoretically derives the probability density function from a probabilistic model of wind velocity around the buildings, the consequent wind pressure, and the resulting ventilation rate and contamination concentration.

Effects of surrounding buildings on wind pressure distributions and ventilative heat losses for a single family house.

Describes a wind tunnel investigation of wind pressure distributions over a 1:100 scale model of a single family house, surrounded by identical building models in various regular arrays. Measures time-mean pressures at 122 locations on walls and roofs in a 90 degree wind angle sector. Calculates air change rates and corresponding heat losses for a full-scale building of the same type for a range of wind speeds and outdoor air temperature. Uses the full number of local pressure coefficients for the building surfaces as input data.

The estimation of internal pressures due to wind with application to cladding pressures and infiltration.

Shows that the interior pressures in buildings are amenable to more detailed analysis than is conventionally given them and that useful information on them can be easily derived from the wind tunnel data on external pressures. The uncertainties can be expressed in parallel statistical terms. The importance of fluctuating pressures are related to the area of the opening and interior volume and a simple criterion indicates when these are likely to be important.

Wind action and temperature difference effects on the ventilation rate and internal pressure of two communicating low-rise buildings.

Presents an analytical model for the prediction of ventilation rates, internal pressures and temperatures as influenced by the combined effects of heat dissipation inside industrial buildings and natural wind action. The model inputs are external pressure distribution, pressure drop coefficients of theopenings and thermal conductance of the walls and roof assumed to be knownfrom experimental data. A simple example is worked out. It consists of a two span long building, equipped with a natural ventilation system and divided into two internal spaces differently heated.

The Aylesbury experiments revisited - further wind tunnel tests and comparisons.

An experiment was indertaken in order to explore sensitivity of measured pressures to the accuracy with which the terrain and boundary layer winds are modelled. A 1:100 scale model was tested for a single roof pitch and wind angle and eight different boundary layer simulations. The experiment was conducted as part of a review of the reliability of wind tunnel test data when compared with full scale experiments, such as those carried out by the Building Research Establishment at Aylesbury.

On the assessment of reliability of wind loading on low buildings.

Conducts a study of wind loading of low buildings, based on models of several different heights, lengths and roof slopes, and includes roofs with and wthout eaves and both open country and urban exposures. This forms the basis of the National Building Code of Canada.

Calculation methods to assess indoor air quality.

Indoor air quality is determined by the sources of the contaminants and the methods used to control their concentrations. To predict the quality of air, algorithms are needed to model the rates of generation, transfer and removal of contamina

Calculation of unsteady room temperature in a dwelling house including the effect of natural ventilation.

Develops a calculation procedure to predict the room air temperature and heat load of Japanese housing. Includes the process to calculate natural ventilation precisely. Predicts the room air temperatures of 2 experimental houses using this method. Finds that the prediction agrees well with actual measurements.

Wind pressure on surfaces of low-rise buildings.

Describes a comprehensive investigation undertaken to determine the wind pressures on surfaces of models of typical low-rise buildings. For many practical applications building surfaces like facade coverings or tiled roofs are permeable. For those coverings the pressure equilibration across thepermeable surface is important when determining the net windload. Gives a survey of the physical parameters influencing the windload of permeable surface coverings. Presents results of a continuing study of the wind load on permeable facade coverings.

Pages