This paper describes a preliminary investigation of the validity of a means of calculating the ventilation rate of a large enclosure from experimental data. It was assumed that the air in the enclosure is not perfectly mixed. The measurement method selected was tracer gas concentration decay. Thecalculation of ventilation rate was performed by "least squares" fitting of a model to the observed tracer gas concentrations. Simulations of tracer gas concentration decay measurements were performed with varying initial distribution of tracer gas.
The performance of whole-house mechanical ventilation systems was explored in an full-scale indoor test house (volume 176 m³ ) . A range of parameters were monitored: * The pressure distribution * The inflow of outdoor air to each room, the mean age of air in each room and the air-exchange effectiveness * The spread of a 'contaminant' released respectively in the kitchen and in the bedroom. The tests were undertaken both with the internal doors closed and with the internal doors open. Both mechanical extract system and balanced (combined) systems were tested.
A Compact Equipment for Survey of Air Renewal (CESAR) was developed at the Ecole Polytechnique Federale de Lausanne in Switzerland. Controlled by a microcomputer, this apparatus uses tracer gas methods ( decay, continuous flow or constant concentration). Up to ten different locations in inhabited rooms can be monitored simultaneously over extended periods of time, using mainly the "constant concentration" technique. Several air renewal surveys were carried out on different inhabited buildings.
A steady state multi-cell calculation model has been developed in order to predict the interconnection between airtightness and ventilation rates. The model has been tested with measured leakage data of a detached house.
Based on the age concept, the performance of the following three principle ventilation schemes have been monitored (supply air terminal - extract air terminal), ceiling-ceiling, ceiling-floor, floor-ceiling. All systems used only air for both heating and cooling. Contaminants with both greater, less and approximately the same density as air were released at a point source. The tests were both carried out in an empty room and with a person (heated mannekin) in the room.
The paper shows that age analysing techniques are an excellent tool to assess ventilation effectiveness. It is important to differentiate between air exchange effectiveness and contaminant removal effectiveness, having continuous generation of contaminants. Only when a source is homogeneous andpassive, are the age of the air and the contaminants in the room equal. However, the air exchange effectiveness accounts for the removal effectiveness of the contaminant left in the room when the generation stops.
A tracer method was developed for the evaluation of workplace ventilation. Nitrous oxide or freon was used as the tracer. The concentration of the tracer gas was measured with an infra-red analyser. The versatility of the tracer technique for industrial hygiene applications was improved by the use of a microcomputer for data calculation, display and storage. Three applications are presented: 1. determination of the capture efficiency of a local exhaust hood, 2. the evaluation of the air leakage of a room, and 3. measurement of the local ventilation rates in a large industrial plant.
An accurate determination of air renewal rate and connective exchanges between units was needed for study of the solar units of the experimental building LESO, in both an occupied and empty state. The CESAR compact equipment for tracer gas (nitrous oxide) measurement was developed. This unit uses a microcomputer to perform a simultaneous and periodical gas analysis in 10 locations. Three tracer gas methods can be used: decay, constant concentration, and continuous flow. The device and regulating program work well with low rates of concentration (100ppm of nitrous oxide).
Continuous monitoring of NO, NO2, CO, CO2, and O2 depletion was conducted in 14 residences (13 with kerosene space heaters and one without) in two locations in the residence (room with the heater and bedroom) and outdoors. The continuous monitor
Reports the result of investigation of the impact of various operational factors on trace combustion products emission rates from unvented gas appliances including ranges and space heaters. The impact of the following factors on the indoor NO, NO2 and CO emission rates were evaluated under controlled conditions in an environmental chamber - 1) the appliance typeand/or design, 2) the primary aeration level, 3) the fuel input rate, 4) the time dependence of emission rates, and 5) the presence of absorbing surfaces such as wood, plaster board, curtains, carpets, linoleum and plaster.