The objective of this study is to provide an explanatory model for total energy consumption in electrically heated single-family dwellings, based on publicly available socio-economic records in Sweden. An earlier study based on 3,200 houses, divided into 93 groups of similar design, has shown that energy consumption for one house may be twice that of another house in the same area, built to an identical design. The problem is: how much of this scatter depends on occupancy behaviour? The present study is based on 78 similar houses, electrically heated, built as one group in 1969.
A large number of multifamily buildings have mechanical exhaust air ventilation. The control of such systems' function is often inadequate and adjustment is rarely carried out. One reason for this is the lack of simple methods for determining system performance and air change rates. The report describes a simple method and simple equipment for determining performance in terms of an installation's capacity curve or 'fan installation' curve. Defines terminology and measurement principle. Illustrates equipment and arrangement for measurements.
Treats major design and construction actions that can be taken in houses to limit conduction losses, increase heating performance, reduce energy losses through windows and provide adequate ventilation air - super insulation, high performance furnace or boiler, high performance windows and controlled ventilation. Discusses in some detail how controlling indoor air pollutants at source is the preferred approach to maintaining indoor air quality. Illustrates diagrammatically and explains how a house functions under natural ventilation conditions.
One of the recent major developments to the ESP (Environmental System Performance) building/plant energy simulation package has been the integration of a technique capable of performing dynamic air flow analysis as part of the building thermal analysis, thereby permitting simultaneous dynamic modelling of energy and air flow within the building envelope. This paper briefly describes the model and its data requirements. It compares and discusses differences in zone energy requirements and temperature levels (obtained from ESP) when 1. applying traditional air changes rates and, 2.
The application of heat pumps to ventilation heat recovery in domestic houses is considered. It is shown that the most effective system is a combination of heat pump and heat recovery unit; a plate heat exchanger is the type commonly used. Such units are now commercially available, and can provide heat at a lower cost per kilowatt hour than the Economy 7 tariff. The performance of several units is presented, and seasonal running costs have been computed for a house equivalent to the Capenhurst low energy house design.
Dampness on the inside surfaces of dwellings is a frequent source of complaint. It may be due to rising damp, rain penetration or a plumbing defect; or it may be due to condensation. Condensation and mould growth are widespread problems in all housing sectors but especially so in tenanted accommodation. In many cases it may be difficult to identify the underlying cause; this can often be complicated by social issues. Mild cases will often yield to simple changes in the heating and ventilation regime in the dwelling or to cosmetic treatments of redecoration, perhaps with fungicidal paint.
Describes an energy conservation strategy for a private home in Columbus Ohio and the benefits that resulted after nine years. The net result of the conservation steps was to reduce the annual house heating energy requirement from approximateley 1060 CCF of natural gas to 410 CCF and annual water heating energy requirement from approximately 400 CCF to 234 CCF. Thecombined savings at the present rate of $65/CCF was $530 per year. Includes a list of conclusions drawn from the experiment.
The moisture and thermal performance of a typical insulated wood-framed residential wall structure was investigated in the laboratory. The study included the effects of three types of vapor retarder systems and the effects of zero, positive, and negative total pressure differences across the wall. Exposure conditions were representative of a northern winter climate.
An important function of the Air Infiltration Centre, Bracknell, Berkshire, Great Britain, is to keep research organizations informed of on-going research into air infiltration if buildings. To fulfil this need, the Centre regularly undertakes aworldwide survey of current research. In this report, theresults of the Centre's most recent survey, completed in 1983, are used to provide a background to present European airtightness and air infiltration measurement practices. A wide range of research activities are summarized involving the use of both pressurization and tracer gas techniques.
Measurements on the rate of air exchange in residential buildings have been carried out by the Swedish Institute for Building Research since 1970. The results of an analysis of these measurements are presented in this paper for about 500 buildings not having mechanical ventilation. The studied buildings include one- and two-storey, detached, single- family houses, row houses, and multifamily residential buildings built between 1900 and 1982 and of various design. In some cases, the buildings have been retrofitted by improving the insulation of the attic or the exterior walls.