The traditional description of a flow system with a multicell model, Vc(t)=Qc(t)+p(t), may sometimes be to restrictive. The multicell theory require measurements, or reconstruo tion, of the tracer concentrations in a number of perfect and immediate mixed cells. Often, using of mixing fans and closing doors between cells are necessary to comply with the theory. Another, very usefil and more general description of a flow system is through the weightingfinction. Unlike the multicell model this is not an internal model, but only an input- output model and it is thus less informative.
This paper is concerned with measurement of airflow in ducts using an active (pumped) sampling system. The system is capable of sampling tracer gases using either tubes packed with adsorbent or sample bags. A perfluorocarbon tracer (PFT) was injected into the ducts using thermostatically-controlled heating blocks. The samples were collected and analysed using a thermal desorber/gas analyser system. Laboratory and field testing of airflow in ducts was carried out. A large office building was studied for measurements of ventilation rate, ventilation efficiency and air quality.
Improvements to ventilation systems for the purpose of saving energy may also affect the provision of good air quality. Measurement of ventilation effectiveness may be used to determine whether or not good fresh air distribution and satisfactory contaminant removal has been achieved in a specific case. However, for such measurements to be useful, it is necessary to establish recommended values of the parameters and to check the reliability of the measurement procedures. This paper is concerned with the second of these problems.
The paper describes measurements made on large doors - 10 to 20 m2 in 2 buildings in Narvik. The air change was measured with the tracer gas (SFg). The method of constant concentration or decaying concentration of the tracer gas was used. The dosing, measuring and calculation of the air change was made with a Briiel & Kjaer gas analyser type 1302 and computer. Use of the decaying method was best with short opening times. The opening of the door in 5 to 7 minutes gives an air exchange of 500 m³ to 1300 m³ or an air change from 0.2 to 1.0.
The first part of this paper describes a detailed study of the flow of aerosol particles through large openings and the second part describes deposition characteristics of aerosol particles in a single-zone chamber lined with different types of materials, e.g. aluminium foil and carpet. Tracer-gas and aerosol particles were injected into a naturally ventilated room and their concentrations with time were monitored. The room was fitted with a number of windows which allowed examination of single-sided ventilation.
The use of sulphur hexafluoride (SF6), nitrous oxide (N2O) or carbon dioxide (CO2) as tracer-gases have been examined for the measurement of airflow in a two-zone environmental chamber. A series of measurements were carried out to examine airflows through a doorway under natural convection, forced convection and combined natural and forced convection. Results were compared with those predicted using the MULTIC computer program.
This paper describes a laboratory model for the testing and validation of tracer gas measurement techniques. Previous attempts at experimental validation have often been limited to two zones, or a particular measurement strategy, or a particular range of flows. The model consists of four zones, each of 1m³ internal volume. The zones are connected so that all possible inter-zone flow paths exist. The flow down each path is driven by a pump and monitored by a flow meter. A control panel enables any combination of interzone flows to be set, within the capacity of the pumps.