Energy Performance standardisation and legislation is receiving an increased interest in many countries. The paper is split up in 3 parts: An overview of the present status: which countries have such regulation in force or under preparation, what is the link with European standardisation? What are the challenges for achieving an effective EP approach? What are important on-going activities?
In this paper, measurement and simulation results are presented that demonstrate the energy performance of a recently built ecological house in Helsinki, Finland. The space heating energy consumption was measured to be 76 kWh/(m 2 a) of which 29% was provided by wood. For comparison, Finnish houses typically consume 120 kWh/(m 2 a) or nearly 60% more energy for space heating. The total energy consumption (121 kWh/(m 2 a)) and electricity consumption (28 kWh/(m 2 a)) were quite low.
In this paper, measurement and simulation results are presented that demonstrate the energy performance of a recently built ecological house in Helsinki, Finland. The space heating energy consumption was measured to be 76 kWh/(m 2 ?a) of which 29% was provided by wood. For comparison, Finnish houses typically consume 120 kWh/(m 2 ?a) or nearly 60% more energy for space heating. The total energy consumption (121 kWh/(m 2 ?a)) and electricity consumption (28 kWh/(m 2 ?a)) were quite low.
The performance of a Ventilated wall component under real weather conditions was tested, during two weather seasons, winter and summer. The component was built in a 1:1 scale, consisting of two equal area parts, a Ventilated wall with and without a radiant barrier. It was installed at the South faade of a PASSYS outdoor Test Cell at CRES. Air openings were located at the bottom and top of each wall component in order to facilitate the air movement through the air gap.
Following calculations of potential energy savings, several types of earth-air heat exchangers have been coupled to buildings in novel concepts for passive heating and cooling of ventilation air. For the first time this technology was used in the Belgian climate. In a first case one short plastic tube is coupled to the HVAC system of an office building, to preheat/precool the fresh ventilation air. Measurements are presented on this system and it is shown that performance could have been improved by more concern during the design stage.
Earth-air heat exchangers can be used to reduce energy consumption in building ventilation systems. The idea is to pre-heat air in winter and pre-cool air in summer using the thermal capacity of the soil. To do this concrete and plastic tubes are put underground, through which the ventilation air is drawn. In this paper a 3D unstructured finite volume model is derived, which allows evaluating the earth-air heat exchanger. The model solves conduction through the soil and the convection from air to the tube wall.
Dynamic insulation is a very good example of a ventilation system integrated with the building envelope. The paper describes two recent studies carried out at Nottingham on dynamic insulation. One study concerns a system based on mechanical ventilation. The other describes a purely natural system. Although there are few existing applications of dynamic insulation, it is argued that there is potential for both systems, particularly with certain types of building. The natural system is technically more challenging than the mechanical system, but the potential energy savings are larger.
DCV systems have proved to be energy saving with correct IAQ in previous studies. In order to achieve correct performance, these systems must be properly designed and tested. The purpose of this study is to identify the possibility of using presence sensors based on movement detection to evaluate the number of people present in a room, and also gather some more information about the real occupation rate of meeting rooms. For that, an experiment in several kinds of meeting rooms, located in different buildings and having different uses has been run.
The Coolhouse project is exploring the viability of alternatives to air-conditioning in southern European countries using innovative passive and low energy cooling and ventilating techniques, with an emphasis on ground cooling. The project will demonstrate a variety of passive cooling techniques and the use of ground cooling systems for housing in Crete and Portugal, a nursing home in southern France and a community centre in Italy. The project partners include architects, energy designers, social housing providers and developers, the project will last 48 months.
This paper summarizes part of the work held at ENTPE within the framework of the IEA Annex 35 project. The aim of the work is to develop and experimentally evaluate control strategies for hybrid ventilation systems to provide comfortable indoor environment and good air quality by combining the best aspect of natural and mechanical ventilation. To reach this target and asses the physical model elaborated in this project, a test cell "HYBCELL" has been designed within the laboratory.