Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:45
The energy performance of new and existing residential buildings needs to be radically improved to meet ambitious climate change goals and residential buildings are by far the largest component in the total building stock. A central boundary condition in constructing energy efficient buildings is doing so while maintaining a healthy, acceptable and desirable indoor environment.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:43
The TAIL scheme was developed to rate buildings' indoor environmental quality (IEQ). The scheme was developed to assure that occupants' health and well-being are not compromised during deep energy renovation (DER) of office buildings and hotels, but it is expected that TAIL can also be used as a general rating scheme of IEQ in any building. TAIL combines the quality of Thermal, Acoustic and Luminous environment and Indoor air quality to determine the overall quality of the indoor environment.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:41
Common metrics used for assessing air quality are based on guidelines and/or standards for regulating concentrations that should not be exceeded over a period. Exceeding those values would represent problematic situations. A lack of agreement on appropriate norms or standards deem this approach sub-optimal. Moreover, this approach does not relate a proportion of exceedance to specific health outcomes.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:39
A Personalized Environmental Control System (PECS) aims to condition the immediate surrounding of occupants. This approach is fundamentally different from typical HVAC systems, which aim to create uniform indoor environments, regardless of the occupant preferences. PECS has several advantages including allowing occupants to adjust their immediate surroundings according to their preferences, which could improve their satisfaction with the indoor environment, and may lead to higher productivity.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:38
Personalized Environmental Control Systems (PECS) condition the immediate surroundings of occupants, and they are expected to provide increased comfort, health, and productivity. Studies have reported on their benefits and limitations in addressing individual Indoor Environmental Quality (IEQ) factors, especially in terms of thermal comfort and indoor air quality. The COVID-19 pandemic and risks associated to climate change, such as heat waves, highlight the necessity for PECS that can address multiple IEQ factors.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:36
Personalized Environmental Control Systems (PECS) with the functions of heating, cooling, ventilation, lighting, and acoustics have the advantage of controlling the localized environment at occupant’s workstation by their preference instead of conditioning an entire space. This improves personal comfort, health of the occupants, and energy efficiency of the entire heating, ventilation and air-conditioning (HVAC) system substantially. Some of the major advantages and limitations of PECS are summarized.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:34
Personalized Environmental Control Systems (PECS) have advantages of controlling the localized environment at occupants’ workstation by their preference instead of conditioning an entire room. A new IEA EBC Annex (Annex 87 - Energy and Indoor Environmental Quality Performance of Personalised Environmental Control Systems) has recently started to establish design criteria and operation guidelines for PECS and to quantify their benefits. This topical session will provide an introduction to the objective/scope, activities, and intended outputs of the annex.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:33
This work is part of two French research projects “Durabilit'air1” (2016-2019) and “Durabilit'air2” (2021-2024), that aim at improving our knowledge on the variation of buildings envelope airtightness through onsite measurement and accelerated ageing in laboratory-controlled conditions.
During a past AIVC conference, a publication of the Durabilit’air1 project has presented and discussed an experimental protocol for characterizing assembly of products for buildings’ airtightness in laboratory controlled conditions.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:31
The content presented comes from the Technical Note (TN) 71 “Durability of building airtightness” published on Airbase, the AIVC bibliographic database.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 13:08
The content presented comes from the Technical Note (TN) 71 “Durability of building airtightness” published on Airbase, the AIVC bibliographic database.