Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:17
In order to get to scale and rapidly decarbonize the energy use of homes, we need information on the performance and costs of potential home upgrade measures. The costs for different performance levels are vital for energy savings and decarbonization program planning and to focus R&D activities on measures that could achieve significant cost reductions. This study obtained data from over 1,700 projects that aimed to achieve advanced levels of energy use and related carbon emissions reductions.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:15
The use of natural ventilation components as an enhancement for the ventilation systems has become more desirable in the building sector. The natural ventilation systems play a crucial role in reducing the carbon footprint from space heating and cooling through applications of low carbon technology and heat recovery unit. Low carbon technologies such as windcatchers and turbine ventilators are commonly used in commercial, educational, and industrial buildings for providing thermal comfort within a building and minimising carbon emissions.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:14
In recent years, there has been increasing number of cases using the double skin façade to satisfy both the indoor views and energy saving. In summer, the double skin façade has a heat shielding effect by exhausting solar heat through natural ventilation and in winter, in addition to the thermal insulation effect by the air layer, a heat collecting effect of solar heat can also be expected. On the other hand, the natural ventilation performance of the double skin façade in summer strongly depends on the outdoor conditions, making it difficult to achieve a stable heat shielding effect.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:11
In a previous study, an optimal control method was proposed for typical office space in hot and humid regions where Thermally Activated Building Systems (TABS) are installed. This method was based on a combination of load prediction, model predictive control, sparse modeling. The cooling capacity and indoor thermal environment were evaluated using computational fluid dynamics analysis and coupled MATLAB/Simulink analysis.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 11:09
Thermal environment affects occupants’ work performance and well-being. Office workers’ complaints regarding thermal environment are often related to either too warm room temperature or draught. Efficiency demands have increased the heat loads in offices, and increased cooling is needed to control the room air temperature. Draught problems occurs typically in these situations when the workstation is located in the downfall area of the inlet jet.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 09:55
Thermoelectric technology has developed as a substitute for existing refrigerants in heating, ventilation, air-conditioning, and refrigeration(HVAC&R) system applications for building decarbonization. Hydraulic thermoelectric radiant cooling panel operated based on the Peltier effect is one of the best way to alternate conventional cooling panels using a chiller with refrigerators. However, there are limitations to apply to building energy simulation and performance evaluation because there are few guidelines and no standard model of a water-cooled thermoelectric radiant cooling panel.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 09:53
The level of airtightness is increasing in newly built Australian apartments. An appropriate ventilation rate is needed to provide occupants with a healthy environment. In 2022, a significant proposed change in the Australian National Construction Code (NCC) would require building tested as achieving less than five air changes per hour at 50Pa to have a continuous flow exhaust.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 09:51
Mitigating the risk of overheating and associated thermal discomfort inside school classrooms is a global concern due to its significant impacts on students’ academic performance, health and wellbeing. Thus, rising ambient temperatures resulting from climate change can be challenging, especially in low energy schools designed to optimise their heating season performance. According to recent studies, many low energy school buildings fail to meet comfort standards and experience overheating, resulting in low student productivity and the need for using air conditioning systems.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 09:49
Building designs to be in line with energy efficient and carbon reduction goals, often focus on energy efficient techniques like high insulation, airtightness. However, these buildings are often subjected to overheating risks due to unforeseeable events like frequent heatwaves and power outages even in moderate climate zones like Belgium. Overheating risks in residential buildings have negative impact on the health of the building occupants (especially on the vulnerable occupants like elderly, infants and sick persons), causing sleep deprivation, heat stress and even mortality.
Submitted by Maria.Kapsalaki on Fri, 03/03/2023 - 09:48
This study aims to develop and evaluate an advanced control method for acceptable indoor air quality (e.g., particulate matter and CO2) with low energy consumption in a residential space. A ventilation system, an air purifier, and a kitchen hood system are installed in the testbed to maintain a healthy IAQ. To accomplish the objective, we use a double deep Q-network (DDQN) which is one of the reinforcement learning. This study utilizes a co-simulation platform with EnergyPlus and Python.