Ambient air filter efficiency in airtight, highly energy efficient dwellings – A simulation study to evaluate benefits and associated energy costs

Highly energy efficient buildings such as ones built to the Passive House standard, require a very airtight building envelope and the installation of a mechanical ventilation with heat recovery (MVHR). MVHR systems incorporate ambient air filters, which reduce the introduction of particulate matter (PM) from outdoor sources into the dwelling. However, indoor PM sources, e.g. cooking, can also contribute substantially to occupants’ exposure and need to be accounted for when designing ventilation or deriving recommendations for filter classes. 

Out2In: impact of filtration and air purification on the penetration of outdoor air pollutants into the indoor environment by ventilation

Within the ventilation principle of buildings, the outdoor air is considered as a source of fresh, "clean" air. Outdoor air quality monitoring by environmental agencies, academic research projects and a broad range of citizen science projects show that this is not always the case. Although the outdoor air quality in our cities already improved, the concentrations of certain pollutants, especially particulate matter and peak pollutions of ozone (and its precursors nitrogen oxides and volatile organic compounds), remain problematic.

Future trends in laboratory methods to predict HVAC in service filter performance

Air filters installed in ventilation systems face various types of aerosols during their service life, both in residential and in commercial buildings. Their particle size is the most important characteristic and ranges from a few nanometers to a few micrometers. Different physicochemical properties, such as phase state, hygroscopicity, and morphology are also important to determine the impact of particulate matter on the behavior of air filters during their service life.

A study of the influence of the position of a chimney terminal on the vertical walls of a building on the air quality of the ventilation air supply

Combustion appliances are used in many buildings to provide space heating and domestic hot water. These appliances emit smoke that contains pollutants that must be kept away from the ventilation air supply of the building, to limit their impact on the indoor air quality (IAQ). An efficient way to prevent those pollutants from entering the ventilation circuit is to place the chimney terminal above the top of the roof, as far as possible from the air supply openings.

When the EPR hits the fan, or…the killing of the fan energy

The last decades big steps have been made on the road to develop and design energy neutral buildings. Despite the large list of developments and improvements of all kind of energy saving technologies we see specifically for the larger non-residential buildings that the electric energy use for fans hardly show any reduction and becomes a dominant factor in the total energy use of these buildings. The fan energy currently counts already for approximately 15-20% of the total building related energy and becomes increasingly important. 

Existing standards for testing gas phase air cleaners

Many test methods exist for evaluating gaseous-contaminant filtration media, and a few for evaluating functional filters and other devices. These test methods are designed primarily for use in product quality control and to rank products. Designers of filtration devices and HVAC (Heating, Ventilating and Air-Conditioning) systems engineers, however, need test data that allows calculation of device performance under actual operating conditions. End users need data to determine system maintenance costs. We call such tests design parameter tests.

Methods to evaluate gas phase air-cleaning technologies

Gas-phase air cleaning methodologies have been considered as an attractive and cost-benefit alternative, and supplement to the traditional ventilation systems securing that air quality in buildings is meeting the prescribed standards. The systems can use the air that has been already conditioned to the required temperature and relative humidity, and by removing airborne gaseous pollutants, this air can be supplied indoors again.

Development of Subjective Evaluation Tool of Work Environment for Office Workers' Work Performance and Health Promotion

In recent years, not only the residence but also the effort of health promotion by improving the social environment including the working and the regional environment has attracted attention. Because of the significant amount of time that office workers spend in the workplace, ideal modification of their working environment and work habits could potentially improve both their intellectual productivity and their physical health. However, optimal environmental improvements have not yet been identified. Therefore, in the present study, we developed a revised version of CASBEE-OHC.

Evaluation potential of indoor environments' ecological valency

Buildings typically are expected to provide their inhabitants with the opportunity to influence the indoor environment using various control devices. These include, for example, windows, luminaires, radiators, and shading elements. The quality and adequacy of the indoor environment is thus dependent on the availability and effectiveness of such devices. There is arguably a lack of generally agreed-upon evaluation procedures for this aspect of buildings' indoor environment, namely its controllability by building users, or – in the terminology of Human Ecology – its "ecological valency".

Residential Application of an Indoor Carbon Dioxide Metric

Indoor carbon dioxide (CO2) concentrations have been used for decades to evaluate indoor air quality (IAQ) and ventilation. However, many of these applications reflect a lack of understanding of the connection between indoor CO2, ventilation rates and IAQ. In particular, a concentration of 1800 mg/m3 (1000 ppmv) has been used as a metric of IAQ and ventilation without an appreciation of its basis or application.

Pages