This paper outlines the extension of a CFD model using DBM modelling approach. Primarily adynamic CFD model is proposed for adiabatic ventilation system. At the inlet a step rise in temperature of the incoming air with steady flow rate is used for the CFD simulation and temperature responses at 36 monitoring locations were extracted. In the second stage, the inlet and the extracted temperature profiles were used to develop DBM models at individual locations. Finally the developed compact DBM model was used to construct model based predictive control algorithm.
The paper examines the efficiency of a local exhaust applied during an orthopaedic surgicaloperation. During operations performing hip replacements bone cement is sometimes applied to fasten the new metal hip to the existing thighbone, especially in case of elderly patients. The bone cement emits harmful VOCs that may influence the operating room personnel and the patient. A local exhaust is applied to reduce the VOC concentration in the operating room air, however, apparently without success.
The paper examines the possibilities of using simple CFD models in practical smoke ventilationdesign. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for ordinary ventilation design is used for the examination. The CFD model is compared with benchmark tests and results from a special application fire simulation CFD code. Apart from benchmark tests two practical applications are examined in shape of modelling a fire in a theatre and a double faade, respectively.
A comparative study between experiments and numerical simulations in the developingzone of a non-isothermal plane vertical jet is presented. Low velocity airflow, in aiding mixedconvection regime, discharging from a large rectangular nozzle in a quiescent medium at a highertemperature is considered (Re = 4220).The "Reynolds-Averaged" Navier-Stokes equations (RANS) are solved with two codes, the CFD code Fluent and the Aquilon code, including different turbulence models.
Seeking to realistically model details of room airflows, researchers have recently embeddeddetailed CFD or sub-zone (zonal) models within multi-zone idealizations of building systems. However a number of issues remain to be resolved to assure the success of this approach. Foremost is the question of zone resistance which is ignored in multi-zone models yet implicitly included in CFD and sub-zone models.This paper defines a fundamental means to measure zone resistance and presents the results of CFD studies to evaluate its relative significance for representative geometries.
Ships are very demanding on the ventilation systems that need to be installed. The reasons forthis are manifold. The following paper will address the problems around the ventilation layout for a typical RoRo-Ferry and will show how CFD can help the designers to optimize the system. One new area of interest is the simulation of fire to optimize the fire suppression systems in engine rooms of RORO vessels.
The paper deals with research on capture efficiency of reinforced exhaust system equipped withhorizontal slot exhaust hood, capture efficiency of which is increased by radial flow of supply air through a slot in hood flange. Investigation was carried out with the use of tracer gas method applied in order to measure the capture efficiency of the system, interferometric method in order to visualize tracer gas propagation from different sources, and smoke method in order to make flow patterns at exhaust system visible.
Equivalent temperature is a thermal index used today for assessment of the thermal comfortin vehicles. Prediction of the percentage of people dissatisfied by the thermal environment iscalculated by implementing equivalent temperature in the PMV/PPD thermal index. In this work,PMV/PPD and PD (draft rate) indices are compared for vehicle conditions, with respect to air velocity and turbulence intensity. Results indicate that turbulence intensity must be taken in consideration for higher air velocities and that PD is the predominant thermal index after a certain air velocity is reached.
The paper presents experiment results of emission rates of HCHO from Medium DensityFiberboard (MDF, JIS grade E2) using three different test chambers. In this study, a full-scale stainless steel test chamber (19.68m3), a boundary layer type small test chamber (0.4m3), and a field and laboratory emission cell (FLEC, 3.510-5m3) were used. The coefficient of air change performance within the three test chambers was examined by CFD analysis. The convective mass transfer coefficient of HCHO from MDF was computed by CFD and the emission experiment.
An experimental study was conducted in a field environmental chamber with the aim of comparingceiling-based mixing ventilation (MV) system and under-floor supply system (UF) from the perspectives of indoor air quality and thermal comfort. Six tropically acclimatized female subjects participated in the experiments and they were required to complete a set of questionnaire pertaining to IAQ and thermal sensation every 20 minutes during each exposure of 2 hours.