A review of smart ventilation energy and IAQ performance in residential buildings

In order to better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or IAQ advantage (or both) and less when it provides a disadvantage. This would be done in a manner that provides improved home energy and IAQ performance, relative to a “dumb” base case. A favorable context exists in many countries to develop smart ventilation strategies.

What is smart ventilation? Presentation of the AIVC definition

In 2017, the Air Infiltration and Ventilation Centre (AIVC) identified smart ventilation for buildings as a new and important topic to be addressed. One of the tasks was to agree on a definition of smart ventilation, which was published in March 2018. The purpose of this presentation is to explain and illustrate the smart ventilation definition by AIVC.

Effects of Meteorological Factors on CO2 concentrations

Amid the contaminant issues, air pollution has awakened more interest due to its potential health risk and its direct effect on human productivity. The overall indoor environment quality depends on the contribution of both the indoor and the outdoor air quality. The outdoor air pollutants penetrate indoor environments through mechanical and natural ventilation as well as by infiltrations through cracks and leaks in building’s envelope. The interaction between the indoor and outdoor air may be studied by the air exchange rate.

Development of a zonal model to assess indoor climate and damage risks to art works in church buildings

Most of the degradation of works of art in historic buildings is caused by unfavourable indoor climate conditions. The most important works of art receive invasive conservation treatment, called direct action, but this treatment is very expensive. To avoid invasive conservation treatments and ensure that works of art are protected for now and for the future, indirect action to mitigate the deterioration process is necessary. This holds that exposure to unfavourable indoor climate conditions should be avoided, as far as is compatible with its social use.

Indoor Environment in Sickroom with Ceiling Induction Diffusers and Measuring Method of Ventilation Effectiveness Using Tracer Gas

In order to provide patients with a high quality indoor environment and ensure a pleasant working place for medical care personnel, thermal environment and indoor air quality are regarded as two of the most important requirements. 

A study of running set-points and user IEQ satisfaction perspectives in the Norwegian commercial building stock

Norwegian building regulations refer to the NS-EN 15251 and the NS-ISO 7730 to define indoor climate criteria in new buildings. For example, the standards prescribe a temperature band of 20-26°C for a normal office situation. Any HVAC engineer or facility manager would however willingly state that office buildings in practice are run with a much smaller temperature dead-band, and that building occupants would complain if temperatures were as high as 26°C.

Indoor air quality measurements in 35 schools of South- Western Europe

The ClimACT project has been developed under the priority axis “Low Carbon Economy” of the Interreg SUDOE program. It aims to support the transition to a low carbon economy in schools. Environmental audits addressing energy and water consumptions, waste management, travels to school, procurements and green spaces have been carried out in 38 pilots schools of Portugal, Spain, France and Gibraltar. Indoor air quality and ventilation measurements were also achieved. The concentrations of 9 aldehydes and 10 selected VOCs were measured from passive sampling in two classrooms of each school.

Ventilation Performance of Office Building with Natural Ventilation Shaft

Using natural ventilation is effective to save energy, and it is essential for energy conservation and decreasing running cost [1]. However, in office buildings located in where mid- to -high-rise buildings are densely distributed, the way of ensuring stable ventilation is very important matter of natural ventilation system. In this research, we focus on the ventilation performance of an office building where the natural ventilation system is introduced by utilizing the buoyancy force through a ventilation shaft.

Ventilation Performance of Natural Ventilation Building with Solar Chimney

Because of the need of energy conservation and Business Continuity Planning (BCP), natural ventilation system, which basically does not use non-renewable energy, is attracting academic/practical attention. However, it is difficult to predict the natural ventilation performance even after completion of the building, because it is easily affected by unstable conditions, such as outdoor temperature and wind. The designing and controlling method of natural ventilation system is not yet sufficiently established.

Thermal Comfort and indoor air quality in Drøbak Montessori School – A case study of Norway’s first plusenergy school

Drøbak Montessori lower secondary school is Norway’s first plus-energy school and also the first school built after the Norwegian Powerhouse-concept, www.powerhouse.no. This concept implies that the building shall produce more renewable energy during the lifetime of the building, than used for materials, production, operation, renovation and demolition.  

Pages