Submitted by Maria.Kapsalaki on Fri, 02/07/2020 - 09:35
Smartness is all around us. The HVAC industry is developing more and more products that have sensors, are intelligent, are connected to the Internet and are being controlled via apps. According to a recent European survey among installers, the request and demand from clients for installing home automation and smart products is the highest for HVAC installations.
Submitted by Maria.Kapsalaki on Thu, 02/06/2020 - 16:02
The modelling of air flows to investigate indoor air quality and energy issues has been a topic at the AIVC for all of its 40 years. Models have been developed that range in complexity from single-zone algebraic expressions that can be calculated by hand to complex multi-zone approaches that integrate contaminant transport and other functions.
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 11:50
As policy makers strive to reduce the energy demands of houses by reducing infiltration rates, an unintended consequence could be a fall in the quality of indoor air with corresponding negative health effects at a population scale. Measuring pollutant concentrations in-situ is difficult, expensive, invasive, and time consuming and so the simulation of indoor conditions, using representative models of a housing stock, is a more common method of investigation.
Submitted by Maria.Kapsalaki on Mon, 04/15/2019 - 11:10
Natural and Hybrid ventilation systems, by using exclusively or partially natural driving forces, help to reconcile building energy sobriety and good Indoor Air Quality (IAQ). However, in France, Building Regulations restrict the use of natural ventilation by imposing minimum airflows in buildings. Natural ventilation, whose driving forces are atmospheric conditions, has an efficiency depending on the climatic region.
Submitted by Maria.Kapsalaki on Thu, 11/23/2017 - 10:41
There are three common methods used to analyse Indoor Air Quality in buildings: in-site measurements, laboratory measurements, or the simulation of indoor spaces using a validated computational model. Each have their advantages, but computational models are generally used to predict air quality in a wide range of indoor environments because they are quick, cheap, and non-invasive. A wide range of inputs are required to accurately simulate airflow and pollutant transport. However, this information may not exist or may only exist in abstract forms.
Submitted by Maria.Kapsalaki on Mon, 03/21/2016 - 12:10
According to the International Energy Agency, buildings represent over one-third of total final energy consumption. Thus, a more sustainable future begins with low energy buildings which must combine comfort and function using passive systems and new evolving technologies. Policies to reduce building energy consumption and carbon emissions have been developed worldwide during the last decades.
Submitted by Maria.Kapsalaki on Mon, 11/16/2015 - 16:54
Mastering building airtightness is essential to meet the requirements of current and future building codes, not only for saving energy but also for ensuring moisture safety. Perfect airtightness is difficult to achieve: failures are often observed, due to bad design or poor workmanship. Some published investigations proved that leaking air mostly flows through porous material and thin air channels, due to material imperfections and construction tolerances.
Submitted by Maria.Kapsalaki on Thu, 05/28/2015 - 10:55
Variable air volume (VAV) ventilation systems reduce fan power consumption compared to constant air volume (CAV) systems because they supply air according to the airflow demand. However VAV ventilation systems do not take fully into account the potential energy savings as the control strategy operates the terminal boxes and the air handling unit (AHU) independently without pressure integration. The pressure in the main duct is maintained at a constant static pressure (CSP) which corresponds to the pressure required under the design full load condition.
Submitted by Maria.Kapsalaki on Wed, 11/06/2013 - 10:02
The importance of adventitious air leakage under normal operational conditions and its reduction in order to save energy is highlighted by the relvant building standards of many countries. This operational leakage is often inferred via the measurement of air permeability, a physical property of a building that indicates the resistance of its fabric to airflow. A building’s permeability is the measure of airflow rate through its envelope at a constant pressure differential of 50 Pascals.
Submitted by Maria.Kapsalaki on Mon, 10/28/2013 - 13:58
The importance of reducing adventitious infiltration in order to save energy is highlighted by the relevant building standards of many countries. This operational infiltration is often inferred via the measurement of the air leakage rate at a pressure differential of 50 Pascals. Some building codes, such as the UK’s Standard Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and environmental properties of a dwelling. The