Modelling of a supply air terminal for room air flow simulation.

The paper discusses methods to set boundary conditions at the air supply opening in predictions of room air flows with computational fluid dynamics. The work is a part of the International Energy Agency project "Air Flow Patterns within Buildings", Annex 20. The air supply terminal in the Annex 20 project is a commercial diffuser which creates a stagnation region and a complicated wall jet below the ceiling. Fairly well predictions in the wall jet region were obtained replacing the diffuser by a simple opening which has the same momentum flow as in the diffuser.

Modelling complex inlet geometries in CFD - applied to air flow in ventilated rooms.

Modern inlet devices applied in the field of ventilation of rooms are getting more complex in terms of geometry in order to fulfil the demand for thermal comfort of the occupants in the room and in order to decrease the energy consumption This expresses the need for more precise calculation of the flow jield. In order to apply CFD for this purpose it is essential to be able to model the inlet conditions precisely and effectively, in a way which is comprehensible to the manufacturer of inlet devices and in a way which can be coped by the computer resources.

Influence of radiative participation of inside air on natural convection in a room.

The basis of this study are experimental results obtained on a real scale cell in controlled climatic conditions which are used to show the potential influence of radiative participation of inside air on natural convection in a room. In a second part, a numerical analysis of flow patterns and heat transfer in a twodimensional thermally driven cavity containing a participating fluid is presented.

Crack flow: a power law estimation technique.

A set of diagrams for estimating flow coefficients and exponents in the power law flow equation for cracks are presented. The diagrams are primarily intended for those who perform infiltration calculations by hand or by using a computer program for single and multi-zone infiltration and ventilation calculations. The error introduced by the estimation technique is compensated for by means of a correction coefficient with aspecific value in different pressure difference intervals. A computer program performing the calculations behind the diagrams is available for public use.

Building design assessment through coupled heat and air flow simulation: two case studies.

This paper is concerned with the application of air flow simulation in design. It describes the real world application - and the results of this with respect to building design improvement - of a building energy modelling system, ESP (RT) , which supports the analysis of coupled heat and fluid flow as encountered in a building andlor plant environment. The use of the system, and the design benefits to accrue, are demonstrated by elaborating two real world case studies.

An evaluation of a computer code for predicting indoor airflow and heat transfer.

The evaluation of a code can be done by investigating two items: solving the correct equations and solving equations correctly and eficiently. An indoor airflow code VentAirI has been developed and is evaluated here. An evaluating procedure is suggested. The code is characterized by the standard high-Reynolds-number k-E model with wall function, the two-band radiation model and the SIMPLE algorithm. Test examples are: 1. A three-dimensional forced convection problem (Re=5000), 2. A natural convection problem (Ra=5 *10^10), 3.

Airflow and thermal comfort in naturally ventilated classrooms.

The airflow pattern and thermal comfort in a naturally ventilated classroom were predicted using CFD techniques. The CFD model for turbulent flow consists of equations for the conservation of mass, momentum and thermal energy and the equations for the k-E turbulence model, taking account of the effects of buoyancy and obstacles in the room. The thermal comfort was assessed according to the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD).

A new approach for the numerical identification of interzonal airflows from tracer gas measurements.

This paper presents a new approach to determine the interzonal airflows of a multizone system using tracer gas measurements. In contrast to methods proposed earlier, the presented method does not use the mass balance as basis for the least squares problem but identifies the interzonal airflows as coefficients of the evolution equations for the concentrations. Therefore estimating the derivatives with respect to the time from measured data is avoided. Furthermore the concentration can be calculated at arbitrary points in time.

Warm air heating with a constant high supply air flow rate without recirculation.

In Halmstad a multi-apartment house has been built with air carried heating. Fresh air was used as the only heat carrier. To improve the air quality it was decided not to use circulation flow, which is normally required for air carried heating. Theheating requirement was obtained with a higher air flow than what the standard requires. This also implied improved air quality. The standard specification states 0.5 changes per hour as the minimum requirement, but in Halmstad the house was ventilated with 0.7 - 1.0 changes per hour.

Ventilation flow analysis - flow visualisation and LDA measurements in water scale models, validation of numerical results.

Within the frame of the IEA Annex 20, laboratory and numerical experiments were conducted in order to study the flow within an isothermal parallepipedic testroom (L x W x H = 4.2 m x 3.6 m x 2.5 m). The air is injected through a complex diffuser (made of 84 nozzles) near the ceiling and is evacuated through a rectangular exit just below the inlet. While other participants to the Annex 20 made measurements on aeraulic testrooms, we used a hydraulic model scaled to the sixth. The parameters were determined according to a Reynolds similitude.

Pages