Submitted by Maria.Kapsalaki on Tue, 03/05/2024 - 14:53
Airtightness is of key importance, both for indoor thermal comfort and for energy efficiency of buildings. Although formally regulated by the rulebook on minimum energy efficiency requirements for buildings, airtightness is not properly addressed in practice in Montenegro. Airtightness measurements are not mandatory, so there is no data in this regard for the building stock so far.
Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 12:04
Building air infiltration rate is required as an important input in the calculation of building heat loss. Tests to directly measure infiltration rates are complex and time-consuming to perform, and are therefore usually substituted with an airtightness test as a more efficient alternative. An empirical ratio, or sometimes an infiltration model, is then used to predict the building infiltration rate from the measured airtightness value. For instance, in the United Kingdom the building air permeability measured by a steady pressurisation test and reported at 50 Pa
Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 12:01
Air leakage in building envelopes is responsible for a large portion of the building’s heating and cooling requirements. Therefore, fast and reliable detection of leaks is crucial for improving energy efficiency.
Submitted by Maria.Kapsalaki on Thu, 02/06/2020 - 17:10
The building airtightness is essential to achieve a high energy performance. In most countries however, it is not mandatory to measure the airtightness. In the Netherlands it is common practice to just take a couple samples in a housing project. These samples do not give a good indication for all the buildings in a project. It is therefore important to measure the airtightness of all the buildings.
Submitted by Maria.Kapsalaki on Thu, 02/06/2020 - 17:07
Previous studies have compared the airtightness measurement of test enclosures utilising both the novel Pulse technique and the conventional blower door method. Discrepancies between results of the two test methods were observed and it was concluded that differences either caused by wind or blower door installation integrity would have had an impact upon the results.
Submitted by Maria.Kapsalaki on Thu, 02/06/2020 - 17:03
Building airtightness is a critical aspect for energy-efficient buildings as energy performance of a building can be reduced significantly by poor airtightness. The Pulse technique has been regarded as a promising technology, which measures the building airtightness at a low pressure of 4Pa by rapidly releasing a 1.5-second pulse of air from a pressurised vessel into the test building and thereby creating an instant pressure rise that quickly reaches a “quasi-steady” condition. However, questions have often been asked on the test viability due to the nature of the test.
Submitted by Maria.Kapsalaki on Wed, 02/05/2020 - 17:07
Addressing the airtightness of the building envelope is key to achieve thermal comfort, good performance of ventilation systems and to avoid excessive energy consumption. Previous studies have estimated an energy impact on infiltration on the heating demand between 2 and 20 kWh/(m2·y) in regions with temperate climates. In Spain, this issue has not yet been addressed in depth. This study aims to assess the energy impact of uncontrolled air flows through the building envelope in residential buildings in Spain.
Submitted by Maria.Kapsalaki on Wed, 02/05/2020 - 16:56
Across different territories there are various normative models for assessing energy demand of domestic dwellings, which use simplified approaches to account for the heat loss due to the air infiltration of a building. For instance, the United Kingdom uses a dwelling energy model, known as the Standard Assessment Procedure (SAP), and this utilises a process where the measured air permeability value (q50), is simply divided by 20 to provide an infiltration rate (subsequent modification factors are then used for factors such as sheltering etc.).
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 14:31
Due to the wind induced pressure, different results may be obtained if the inside-outside pressure difference is measured across different locations on the building envelope, i.e. if the external pressure tap of a differential pressure sensor measuring this pressure difference is placed in different positions. Therefore, the position of the external pressure tap may influence an airtightness test result as well.
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 15:54
Air infiltration contributes to a heat loss typically representing up to one third of the heating demand of a building. The building airtightness, also quantified as air leakage, is the fundamental building property that impacts infiltration. The steady (de)pressurization method (blower door) is the widely accepted standard process for measuring building air leakage. However, this method requires the enclosure to be pressurised to a typical range of 10-60 Pa, which is not physically representative of the pressures experienced by buildings under natural conditions.