Submitted by Maria.Kapsalaki on Wed, 10/28/2015 - 17:07
Durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008.
Submitted by Maria.Kapsalaki on Thu, 05/28/2015 - 13:24
The article presents the results of our research, which was realized under a cooperation project between the University of Pécs, Hungary and the University of Osijek, Croatia. The aim was to gather 50 Pa ACH, air tightness and spontaneous ACH information of residential houses by the Croatian and Hungarian border. The budget of the project allowed approximately 50 tests for each university; these summarized results are presented together with correlations found between the results.
Submitted by Maria.Kapsalaki on Thu, 05/28/2015 - 10:52
The airtightness test of the building is one of a few building envelope measurements used in practice, which is quantitative, not just qualitative as e.g. infrared thermography. The so-called blower-door test result may be a measure of the building design and construction quality and could also be used for the energy demand for heating and cooling analyses.
Submitted by Maria.Kapsalaki on Wed, 05/27/2015 - 14:51
This study presents a comparison of air leakage measurements collected recently (November 2013 to March 2014) with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. Durability of building envelope is important to new homes that are increasingly built with improved levels of airtightness.
Submitted by Maria.Kapsalaki on Fri, 05/30/2014 - 12:50
In 1998, NIST published a review of commercial and institutional building airtightness data that found significant levels of air leakage and debunked the "myth" of the airtight commercial building (Persily, 1998). Since then, NIST has expanded and maintained a database of whole building envelope leakage measurements of U.S. commercial and institutional buildings.
Submitted by Maria.Kapsalaki on Thu, 12/26/2013 - 10:49
The paper presents a calculation method for the combined standard uncertainty associated with the buildings airtightness measurement done in accordance with the ISO standard 9972:2006 (or EN 13829).
The method consists in an application of the law of propagation of uncertainty (JCGM 100:2008) combined with a linear regression (y = a x + b). It goes from the measured values to the air leakage rate and the air change rate.
Submitted by Maria.Kapsalaki on Tue, 11/05/2013 - 15:37
Indoor environment quality in buildings strongly depends on the proper ventilation. Still a large amount of single- and multifamily buildings are equipped with the natural ventilation system.
When the air exchange in the building is estimated, the main uncertainty concerns the air tightness of the given object. This parameter is used as the input data when the ventilation air flows in building are simulated, and therefore a reliable determination of the air tightness is essential.
Submitted by Maria.Kapsalaki on Tue, 11/05/2013 - 15:18
The airtightness of office and educational buildings influences energy use and thermal comfort. A leaky building is likely to have a high use of energy and thermal discomfort. The knowledge of real airtightness levels of entire buildings and their impact on the energy use is very low, except for a study carried out in the USA. Therefore two different methods of airtightness testing were applied to six entire Swedish office and educational buildings built since 2000. The first method involves using the ventilation system of the building and the second one to use a number of blower doors.
Submitted by Maria.Kapsalaki on Tue, 11/05/2013 - 13:42
LBNL Residential Diagnostics Database (ResDB) contains blower door measurements and other diagnostic test results of homes in United States. Of these, approximately 134,000 single-family detached homes have sufficient information for the analysis of air leakage in relation to a number of housing characteristics. We performed regression analysis to consider the correlation between normalized leakage and a number of explanatory variables: IECC climate zone, floor area, height, year built, foundation type, duct location, and other housing characteristics.
Submitted by Maria.Kapsalaki on Fri, 11/01/2013 - 10:45
From the beginning of year 2007 the buildings in Finland must have energy efficiency calculations, which requirements are now part of Building Codes, based on European Performance of Buildings Directive. According the renewed code, being into the force from July 2012, air tightness number q50 cannot be more than 4 m3/ (h*m2). Better air tightness can be shown by measurements. The air infiltration must be calculated in compensation calculations based on air tightness number 2.0 m3/ (h*m2). The energy efficiency requirements caused an immediate response in the building sector.