Interlaboratory tests for the determination of repeatability and reproducibility of buildings airtightness measurements

The issue of the uncertainty of building airtightness measurements has built up a greater importance since this topic was introduced in many regulations regarding the energy performance of buildings. Different studies have contributed to the evaluation of the uncertainty but the question is still incompletely solved in practice.
To contribute to the determination of the repeatability and reproducibility of these measurements in practice, the Belgian Building Research Institute organized interlaboratory tests with 10 other laboratories.

Preliminary analysis of U.S residential air leakage database v.2011

Air leakage and other diagnostic measurements are being added to LBNL’s Residential Diagnostics Database (ResDB). We describe the sources of data that amount to more than 80,000 blower door measurements. We present summary statistics of selected parameters, such as floor area and year built. We compare the house characteristics of new additions to ResDB with prior data.

The use of building own ventilation system in measuring airtightness

The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio in Finland participate a project, in which different tools will be used and tested to improve the energy efficiency of public buildings. In this project there were pilot buildings e.g. schools. The other pilot school consumed much more heating energy than the other same type of school. Air tightness was measured using the own ventilation system of the building and by remote control from the central operation room.

Air Leakage Tests for the requirements of the LEED in two high-rise residential buildings

Air leakage test was carried out according to ASTM E779-03, Standard Test Method for Determining Air Leakage Rate by Fan Pressurization to meet the requirements of the LEED-NC v2.2(EQp2). Air leakage tests for quality assurance can be performed once all work on the air barrier has been completed and all windows and doors have been installed in two high-rise residential buildings. Test units selection was carried out in accordance with the following guidance, California’s 2001 Energy Efficiency Standards.

Analysis of U.S. Residential Air Leakage Database

The air leakage of a building envelope can be determined from fan pressurization measurements with a blower door. More than 70,000 air leakage measurements have been compiled into a database. In addition to air leakage, the database includes other important characteristics of the dwellings tested, such as floor area, year built, and location. There are also data for some houses on the presence of heating ducts, and floor/basement construction type. The purpose of this work is to identify house characteristics that can be used to predict air leakage.

The use of blower door data.

The role of ventilation in the housing stock is to provide fresh air and to dilute internally-generated pollutants in order to assure adequate indoor air quality. Blower doors are used to measure the air tightness and air leakage of building envelopes. As existing dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems, accurate understanding of the uses of blowerdoor data is critical. Blower doors can be used to answer the following questions:.

Blower door tests (EN 13829) for quality assurance : getting air-tight buildings in retroffiting, too

For retrofitting as well as for new buildings a good airtightness is an important issue. In Germany, Austria and Switzerland about 1000 persons conduct blower door tests according to EN 13829 in order to characterize the air permeability of buildings. Also, preliminary measurements of the air barrier are made, often by the craftsmen themselves. Early measurements allow to repair leakages more easily than when the building is completed.

Whole-building airflow network characterization by a many pressure states (MPS) technique.

Included in applications of multizone airflow and contaminant dispersion models to specific buildings are air quality diagnosis, weatherization, smoke control, and pressure balancing for laboratory hood safety. States that uncertainties in model inputs mean that the benefits of these applications are not being fully realized. Emphasises the need for an economical test method that is as accurate but less intrusive and faster than incremental or component-by-component blower door testing.

How tight are America's houses?

            

Pages