Indoor air quality: some residential answers.

Treats major design and construction actions that can be taken in houses to limit conduction losses, increase heating performance, reduce energy losses through windows and provide adequate ventilation air - super insulation, high performance furnace or boiler, high performance windows and controlled ventilation. Discusses in some detail how controlling indoor air pollutants at source is the preferred approach to maintaining indoor air quality. Illustrates diagrammatically and explains how a house functions under natural ventilation conditions.

Estimating interroom contaminant movements.

Development of infiltration and interroom airflow calculation methods, driven by a concern for indoor air quality have led to a computer simulation of interroom contaminant movement. The model, which assumes fully mixed room air, shows that open doorways provide rapid mixing between rooms in buildings using forced air heating. It also confirms that it is most energy efficient to remove the contaminant nearest its source. Detailed modeling of the variations in contaminant concentration within a room is not presently feasible for long term energy analysis simulations.

Energy efficient doors and windows.

Factsheet includes useful chart on glazing materials. Gives basic advice on limiting heat loss from doors and windows, together with recommendations for materials and installation, Also deals with the new hi tech windows using heat reflective film, and problems of condens- ation.

Pages