The multi-storey blocks which constitute the main type of building in Greek urban environments, have certain common characteristics. Those characteristics include the overall building dimensions and geometry, internal room dimensions, the materials used both in building construction and insulation, the size and the arrangement of the openings on the facades, the arrangement of the balconies, the position and dimension of the staircase etc.
This paper describes an investigation into the ventilation performance and the indoor air quality of a portable classroom. Both field measurements and numerical simulations based on CFD (Computational Fluid Dynamics) technology were used. Field measurements in an unoccupied classroom used smoke to visualize the flow pattern, and hot-film probes to quantitatively measure air velocity. These field measurements provided the boundary conditions for CFD simulations and the experimental data to examine the accuracy of the CFD simulations.
This paper investigates the relationship between the neutral height for air distribution and the ventilation load in a room with displacement ventilation. An environmental chamber equipped with a displacement ventilation system has been used to carry out the neutral height measurements with the presence of a heated mannequin and other heat sources in the chamber. The total room load used was varied from 104 W to 502 W, i.e., corresponding to a ventilation load from 10 W/m2 to 60 W/m2. The prediction of the neutral height was based on plume theory.
A number of new techniques have been developed in recent years, by various researchers, to assist in the sizing and positioning of natural ventilation openings. These may be of considerable assistance in the natural ventilation design process, while still allowing architectural freedom. This paper reviews some of the available techniques. The complexity of the configurations accounted for by the procedures ranges from two openings with the indoor air at a uniform temperature to a technique that allows for multiple openings throughout a multi-zone structure.