That study aims at proving that the use of low-polluting building materials leads to an improvement of the air quality. For the experiment the space of an office qualified as low polluting has been altered by introducing indoor pollution sources (such as linoleum, wooden shelves, books and paper documents) and an outdoor air supply rate altered too. The concentrations of VOCs were measured in those different conditions along with the perception of the air quality assessed by a panel of 30 female subjects.
Descibes an inter-laboratory comparison between 18 labs from 10 European countries to improve the procedure used to measure VOC emitted from samples of building materials and products in small test chambers.
The mitigation to reduce indoor pollutant concentration are increasing ventilation rate or to reduce the emission of the pollutant which is also common in VOCs. Households, furnitures, building materials and so are well known as the source of indoor VOCs. There are several devices to measure emission of VOCs, such as an emission chamber or FLEC, which are adopted in ISO 16000. However these 2 methods has each disadvantages e.g. the chamber is suitable only in a fixed condition such as a laboratory, or the necessity of a pump and humidifer.
The use of hypochlorite for water disinfection is source of chloramines production, which are transferred to the atmosphere.Nitrogen trichloride (NCl3) is the main component, which is a major cause of respiratory and ocular problems for swimmers and lifeguards. This first part comprised a sampling campaign concerning the measurement of NCl3 in a swimming pool (Picardie-France) during 15 days (October 2001). This campaign concerned the air quality diagnostics and showed that the majority of detected levels were critical (P50 = 0,44 mg/m 3 ).
This article describes a new system developed and patented by a Belgian firm for air purification, using photocatalysis (UVA radiation + titania dioxide) for VOC and odour removal. Results from degradation tests are presented.
Prediction of airflow and pollutant transfers in a simple multizone building may use different approaches such as zonal or nodal modeling methods. This paper proposes to improve the modeling of pollutant transport by coupling nodal and zonal models in the SPARK simulation environment.
Nodal model gives mass airflow rates used as boundary conditions in the zonal model to predict pollutants mass transport. Simulation results are compared with experimental data from the 2 zones testing room Minibat.
Full-scale laboratory measurements combined with numerical simulations were undertaken to evaluate CFD capability to predict the pesticide dispersion in a naturally ventilated building. CFD successfully reproduced the trends but overestimates the mixing inside the building.
This study presents a model to predict the time required by a pollutant to disperse in a room, due to the effects of room occupancy (a moving person enhances the mixing of pollutants).
Forty seven residential buildings were monitored for indoor acid aerosol, nitric acid and ammonia concentrations over a summer in State College, Pennsylvania. Questionnaires were also distributed for information on occupant behaviour. The paper discusses the relationship between ammonia and concentrations of aerosol strong acidity and HNO3 in the buildings. The indoor outdoor relationship was also analysed. High indoor NH3 levels were found and low acid levels. Mass balance models that included an NH3 neutralisation term were found to predict indoor acid concentrations reasonably well.