Describes plan to retrofit 25 townhouses at Twin Rivers evaluating retrofits by instrumenting each house to record energy consumption, temperature, window and door opening and furnace operation. Aim of the first round of retrofits was a payback period of no more than three years. Describes fourretrofits A,B,C and D. A,C and D improved attic and cellar insulation and insulated the heating system. B aimed to limitthe amount of air infiltration from cracks around doors and windows by weatherstripping. Early results showed gas savings of the order of 25% and electrical savings of 10%
Reports two-year programme to evaluate the effect of air infiltration on the heating needs of 29 electrically heated homes. Air-change rates before and after retrofitting tominimize infiltration were measured by a pressure method and heat energy consumption and occupancy effects were monitored. Thirty similar homes were also tested for infiltration and retained as controls.< Describes the retrofit methods, their effect upon the induced air infiltration, the other data which are being collected, and the data analyses which are expected at the completion of the programme.
Describes retrofitting a wood-frame residence in three stages to reduce its energy requirements for heating and cooling. The three retrofit stages comprised reducing air leaks; adding storm windows; and installing insulation in the floor ceiling andwalls. The house was extensively insulated to evaluate energy savings and changes in air infiltration rates. Concludes that retrofits produced only marginal reduction in air infiltration rates and attributes this to the original tight construction of the house.
Reports measurements made on windows in old blocks of flats in Sweden. Measurements were taken of air-leakage through 21 windows under different air pressures before and after the renewal of draught excluders between window frame and casement. Concludes that draught proofing of old windows is extremely effective. Heat flow through 18 double-glazed windows is also measured and two systems of converting double to triple glazing are studied. Conversion was found to improve u values by approximately 35%.
Details the retrofits at Twin Rivers, grouped into packages A,B, C and D. A,B and D reduced heat flow through attic and basement. B limits the amount of air infiltration from crack openings, especially round windows and doors, by the addition of Vinyl foam weatherstrips, caulking of window and door frames and adjustment of ill-fitting casements.
Presents and explains derivation of simplified heat transfer equation as part of an averaging method to enable perceptive home owner to determine air infiltration. A winter month isselected and the gas meter read daily. Explains how with these minimum data and summary data from us weather bureau average infiltration for the month, plus other useful data such as relative magnitude of conduction vs. infiltration losses can be determined. Demonstrates technique by worked example for a demonstration house.
Describes sealing houses against air infiltration to allow controlled ventilation. Notes inherent risks in poor ventilation such as high radon content and its associated decay products, poor air quality, moisture, condensation, mould and allergy-producing dust particles. Treats requirements in swedish building code and stipulated minimum air change rate. Comprehensive series of graphs illustrates air change rate as function of wind speed and different grades of building air tightness.