Field measurements of characteristics of turbulent air flow in the occupied zone of ventilated spaces.

Characteristics of the air velocity were measured at 500 points in the occupied zone of 20 typically ventilated spaces. A relationship between the mean velocity and the standard deviation was found at four heights above the floor. The turbulence intensity varied from 10 to 70% at ankle level (0.1 m) and from 20 to 55% at head level. This is similar to the experimental conditions under which the draught chart by Fanger and Christensen was established.

Environment and Power: Home weatherization and indoor air pollutants.

A booklet for consumers explaining the effects of house-tightening measures on pollutant levels. It also provides a guide to detecting and controlling pollutants commonly found in homes.

Environment and Power: Energy efficient new homes and indoor air pollutants.

This booklet for consumers discusses what indoor air pollution is and how it can affect health. Ways of reducing pollutant levels are summarised

Indoor air pollution and housing technology.

Reviews the scientific literature on indoor air pollution. Low-pollution design and construction techniques employed in the Sunnyhill Low-Pollution Research Centre are outlined in detail and suggestions are made on their applicability to new and existing housing in Canada. The study recommends a four-fold approach to the indoor air pollution problem by government and the building industry: A) short-circuit major potential hazards, B) deal with low-pollution housing needs, C) spread and apply present knowledge, and D)foster more research and discussions on regulation.

Assessment and control of indoor air quality in a super-insulated, retrofit house.

A single family residence in St. Paul, Minnesota, constructed in 1957, was retrofitted in 1983. This resulted in approximately 50% reduction in annual heating consumption compared to the average consumption over the previous three years. However, the occupants complained of poor air quality. Measurements indicated that total particulates, CO, CO2, relative humidity, and temperature were at levels of some concern; NO2, radon and formaldehyde concentrations were not significant.

Ventilation of residential buildings. Beluftung von wohngebauden.

Investigates the effects of five different ventilation strategies on the annual energy consumption for heating and warm water of residential (family) homes. The strategies are: (1) natural ventilation, (2) mechanical ventilation and three forms of exhaust plants. Uses weather data from Portland, Oregon and Great Falls, Montana as examples of very different climatic conditions and heating/cooling requirements. The University of Wisconsin TRNSYS program was used for numerical simulation.

Human exposure to radon decay products.

Discusses the sources of radiation exposure for the population of the UK. Radon is the most important natural element. Presents results of national and regional surveys. Remedies and preventive measures are outlined and protection standards are suggested.

The great escape

Describes experiments to measure the ventilation rates of two small open-plan factories, one typical of current design and one designed to be more energy efficient, with increased levels of insulation and a tighter method of construction. Air leakage rates were measured using the Watson House Leakage Tester, and ventilation rates were monitored by the Watson House Autovent System. The problems involved are described, and how they were overcome in this case.

Evaluation of ventilation systems through three dimensional numerical computation.

To make an evaluation of ventilation systems, numerical computation was carried out for three dimensional, isothermal, and turbulent flow schemes. It was found that there exists an optimum position for an inlet in relation to an outlet whereby the most effective ventilation can be attained. In addition, similar to the results for the two dimensional computation, the slope of the concentration decay is virtually constant and independent of the position in the room, so the mixing factor derived from this slope can be used as an index of the ventilation efficiency.

Trickle ventilators in low energy houses.

Describes a demonstration project to show that, in well sealed houses, trickle ventilators can provide an opening large enough to reduce condensation and odour problems, but small enough to avoid any significant increase in energy use.

Pages