Discusses reasons behind occupant ventilating behaviour, such as: 1. general attitudes, particularly regarding energy, 2. occupant requirements, 3. components of the habitat micro-climate, 4. optimum micro-climate and desired micro-climate, 5. means available in the habitat to modify the micro-climate - a. general means, b. ventilation as a specific means, 6. balancing requirements against means, 7.
50 occupants of terraced houses, divided into 4 groups, were surveyed three times in October 1981, February 1983 and March 1983. The first group had Isolair air heating and ventilating systems, and were well insulated with double glazing. The second group was heated by radiators and had the same insulation as group 1. Groups 3 and 4 had normal insulation. Results of the surveys are given. The air heating and ventilating system did not provide the level of satisfaction hoped for. The group with the air heating and ventilating system was surveyed again in March 1984.
With correct application of vapour barriers the ventilation of building structures is in general not necessary, unless such barriers prevent the escape of trapped moisture from moisture-sensitive - especially organic - materials. Indoor and outd
Reviews current knowledge about the sources of a number of indoor pollutants and their concentrations: tobacco smoke, NO2, CO, radon, formaldehyde, SO2, CO2, O3, asbestos, mineral fibres, organics and allergens. Lists the adverse health effects from exposure to each of the pollutants. Finds instrumentation for measuring exposure acceptable, but monitoring and knowledge of distribution of sources and concentrations inadequate or marginal. Knowledge of exposure-effects relationship is inadequate, especially with regard to delayed effects of chronic exposures.
Reports a case study dealing with the relation between ventilating and airing behaviour and the outside climate. Also the significance of other variables such as preferences with respect to the indoor climate are considered. Wind speed is found to correlate, but outside temperature (varying from -3 to +9 degrees C) does not correlate with the length of time the windows in the bedrooms and bathrooms are opened. Rainfall and sunshine also seem to have some influence. The main reasons for airing are that the bedrooms are too warm and not fresh.
Long-term monitoring of radon, aerosol and carbon dioxide concentrations was carried out in two Finnish public buildings. In each case, a distinct periodic behaviour of pollutant concentrations was observed. CO2 and aerosol showed maxima during the working hours, but the fluctuations of the aerosol concentration were faster and more irregular. The radon concentration peaked at night and on weekends, dropping off rapidly in the working day mornings when ventilation was turned on.
A major pathway for loss of conditioned air in East Tennessee homes with externally located heating, ventilation, and air-conditioning (HVAC) systems is leakage in the ductwork. The average infiltration rate, as measured by Freon-12 trace
As part of an investigation into the influence of a residential weatherization program on indoor air quality and energy efficiency, a multi-pollutant survey of the air inside 50 Wisconsin homes was conducted three times during the heating season
The physical reason for draughts is in the first place the convective surface-heat-transfer coefficient. To find out about the influence of turbulence on draughts, it is necessary to carry out measurements of the surface-heat-transfer coefficient in relation to air turbulence. The results of first measurements of this kind are the subject of this paper.
In this paper a hypothesis is set up for explaining the discrepancies between the relatively high acceptable air velocities found during many earlier climate chamber tests, and the much lower acceptable velocities found under many practical circ