Evolution of ventilation strategies in air-conditioned buildings in Singapore – IAQ and Energy perspectives

Situated 1º North of the equator, Singapore has a year-round hot and humid climate with temperatures in the range of 25 and 32º C and relative humidity around 70%.  In view of these environmental conditions, there is really no need for “Heating (or simply “H”) in the traditional Heating, Ventilating and Air-Conditioning (HVAC) terminology.  Consequently, the term Air-Conditioning and Mechanical Ventilation (ACMV) is used in the local industry.

Dynamic performance of displacement ventilation in a lecture hall

An accurate temperature gradient calculation is essential for displacement ventilation (DV) system design, since it directly relates to the calculation of the required supply air flow rate. Inaccurate temperature prediction can cause the poor thermal comfort and w sizing of the ventilation and cooling systems.

Numerical Modelling of Large Air-Conditioned Space: Comparison of Two Ventilation Systems

This paper presents a comparative study based on CFD simulation between the performance of Impinging Jet Ventilation (IJV) and Mixing Ventilation (MV) systems in providing indoor air quality and thermal comfort for a mechanically ventilated occupied large open plan office (floor-to-ceiling height > 5m). Large spaces differ from spaces with standard heights because of the significant upward stratification.

Proposal of Optimal Control Method in order to reduce Mutual Interference of Air Conditioning Indoor Units

In recent years, many multi-type package air conditioning systems for buildings have become widespread in office buildings in Japan, and there are many cases where one air conditioning space is shared by using several indoor air conditioning units. The advantages of multi-type package air conditioning system are that it is possible to operate and control individually for each indoor unit, and that the user can arbitrarily change the temperature setting of the indoor unit.

Minimising the influence of the stack effect and wind on the operation of mechanical exhaust ventilation systems

Ventilation systems play an important role in providing a good indoor air quality in dwellings. Mechanical exhaust ventilation systems implement natural vents, also called trickle vents, to supply outdoor air to the dwelling. The airflow through these natural supply vents depends on the natural driving forces, i.e. wind and the stack effect, which vary in time.  

Multi-Objective Optimization of Energy Saving and Thermal Comfort in Thermo Active Building System based on Model Predictive Control

Japan will have to further reduce CO2 emissions to meet its obligations under the Paris Agreement negotiated at the 2015 United Nations Climate Change Conference. Society is increasingly demanding higher energy-efficiency standards and zero-energy buildings because general commercial buildings have high energy costs, especially for air conditioning.

Two Case Studies on Ventilation for Indoor Radon Control

Health Canada’s cross-Canada residential radon survey report from 2012 demonstrated that roughly 7% of Canadian homes contain radon levels above the Canadian guideline of 200 Bq/m3. The research outlined in this paper evaluates the effect of ventilation rates on radon levels in two homes located in Ontario, Canada. The first case study consisted of short-term (2 day) radon monitoring in a home using three ventilation strategies; one heat recovery ventilator (HRV) running, two HRVs running, and both HRVs turned off.

Influence of Ventilation on Radon Concentration in a Study Case in Spain

Radon gas is a well-known building´s pollutant which can affect negatively people´s health (WHO, 2009). Radon´s source is the soil underneath buildings. Radon moves from the soil to the buildings by advection through cracks and joints, and diffusion through porous materials. Once radon enters buildings it can accumulate in lower areas due to lack of ventilation. Ventilation is one of the main ways to prevent radon from accumulating in enclosed spaces in the case of moderate radon concentrations up to 600 Bq/m3 (Collignan, 2008). 

Energy and Indoor Air Quality Analysis of Mixed Air and Displacement Ventilation Systems

Indoor pollutants and particles pose a threat to human health as people spend 90% of their time in indoor spaces. A proper ventilation system should be able to remove indoor air pollutants, reduce particle depositions, at the lowest energy consumption by that system. In this work, particle concentrations and depositions are presented for two ventilation configurations (1) Displacement Ventilation (DV) and (2) the conventional ceiling supply and return.

Investigation of The Combined Effect of Indoor Air Stability and Displacement Ventilation on Pollutant Transport in Human Breathing Microenvironment

The ventilation system removes pollutants effectively, and the resultant vertical temperature difference in the room greatly affects the indoor air distribution. A reasonable air distribution system is essential to provide a satisfying indoor air quality (IAQ) for the occupants, of which air quality in the breathing microenvironment plays a major role in occupant health, as they are exposed to this region directly.

Pages