Describes computer-based method of calculating heating or cooling capacity of a building, or energy consumed or natural temperature reached without air conditioning. Assumes steady state conditions and establishes heat balance in the form of a matrix separating climatic and occupancy effects. Presents intermittent heating dynamic calculation in non-steady state conditions. Treats causes of uncertainty building use, climate data, air infiltration and presents calculation programs developed in building physics laboratory of Liege University.
Developes a simple procedure for calculating exterior wall pressure differences and air infiltration rates for various wind velocites and direction by applying the pressure data obtained from a wind tunnel model study to a computer model building. Gives separate expressions for air infiltration caused by stack action and by wind and an expression for the combined effect. Gives example of infiltration calculations compared with computer results and finds good agreement.
Describes investigation of air infiltration in a house using chlorothene as a tracer gas. Gives table of the data collected. Reports the unexpected result that infiltration rates could bereduced by increasing inside relative humidity. Suggests this is due to changes in hygroscopic building materials, especially wood. Concludes that increasing relative humidity from 20 to 40%could save from 5 to 15% on fuel costs. This analysis does not take into account the energy used to evaporate humidification water.
Describes detailed study of infiltration rates measured with a tracer gas and air leakage rates obtained from fan pressurization in small, 3 - bedroom California house as part of a larger study. Finds surface pressure measurements are an essential step in process of finding a correlation between natural air infiltration and air leakage by pressurization. Measurements also show significant duct leakage and air flow between attic, living space and crawl space.
Treats development of generalised model of hourly air infiltration in residences. Describes its testing. Uses tracer gas measurements of infiltration in 9 research residences inColumbus, Ohio, under widely varying weather conditions. Estimates various linear and physical models against 7000 measurements. Measures and correlates weather parameters. Correlation coefficients ranged around 0.9 with an error between 0.1 to 0.36 air changes. presents Fortran algorithm.
Known principles for the prevention of rain penetration and air leakage are not being applied in practice. States that rain penetration requires the simultaneous presence of water, openings and a force ; the two-stage weathertightening or "open rain screen" separates the control of these factors and allows the production of a weathertight joint under practical conditions. Outlines the causes of air infiltration and gives brief case histories to illustrate the serious problems that can arise from air leakage.
States that current methods of estimating heat demand of buildings are very inaccurate, and so large safety margins are used which usually result in overestimating the necessary heating plant capacity. Describes computer program developed to improve the accuracy of heat demand calculations. Gives formulae used in the program for calculating heat demand, pressure conditions and air flow within the building. Gives example of the use of the program to calculate the effect of wind on an eight-storey residential building.
Reports the investigation of the natural ventilation of three test houses. Describes the houses which were of standard design. Natural ventilation rates were measured using sulphur hexafluoride as a tracer gas. An energy audit was also performed using a fan to pressurize and depressurize the house and an infrared scanner to detect the leakage paths. The tracer gas measurements were converted to a format similar to thepressurization results by using a previously developed model. Gives results in the form of graphs.
Describes experiment to determine the effect of an evergreen windbreak on residential heat losses attributable to air infiltration. Eight-meter tall pines were arranged as an experimental windbreak to shelter a townhouse for nine weeks Air infiltration was measured continuously using SF6 as a tracer gas to compare air change rates before and after the windbreak. A dimensionless parameter was derived to distinguish between wind-and temperature-produced air infiltration and to determine the effects of wind direction.
Documents and compares the air infiltration levels experienced in five Twin Rivers townhouses before and after retrofit. The retrofits sealed and caulked window frames, sealed cracks along the attic floor/party wall Junction and reduced leakage from basement to attic. Weather data and air infiltration rates were analysed using multiple regression, polar plotting, stemleaf plotting and comparisons of infiltration rates with inside to outside temperature differences. Gives results in graphs and tables.