Due to better insulation and improved airtightness of doors and windows, the supply of fresh air entering a room has been greatly reduced. This in turn causes an increase in the amount of pollutants emitted by different insulation and building materials. Measurements of the formaldehyde concentration in newbuildings have shown that the admissible limits are still exceeded even after a year. Stricter regulations limiting the emissions of pollutants are therefore urgently necessary.
Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating showed no significant increase in concentration over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's 10 CFR 20 limit of 3 pCi/l for continuous exposure. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal.
Radon concentrations were measured in about 1000 Dutch dwellings and at 200 outside locations using passive monitors. A median concentration of 24 Bq/m3 was found for the dwellings with a highest value of 190 Bq/m3. Seasonal effects were found to be small. Correlations were observed between median radon concentrations and construction parameters including ventilation rate. The concentrations outside show an unexpected dependence on the location. Comparison with previous grab-sampling data on radon-daughter concentrations reveals an average equilibrium factor of 0.3.
Three different investigations of radon in Swedish dwellings are presented - a nationwide study conducted primarily to determine the collective dose to the Swedish population from exposure to radon and radon daughter, a supplementary study of newly built detached houses in order to find out whether theregulations in the Building Code prescribes acceptable radon levels in new houses built on normal ground, and measurements made by the local authorities in order to find houses with levels of radon daughters above the norm.
To develop effective monitoring and control programs for indoor radon it is important to understand the causes of the broad range of concentrations that have been observed. Measurements of indoor radon concentration and air-exchange rate in dwellings in several countries indicate that this variability arises largely from differences among structures in the rate of radon entry.
Volatile organic chemicals in indoor air of a home-for-the-elderly and a new local government office building were identified and quantified using Texax GCR samplers and capillary gas chromatography/mass spectrometry analysis. Over three hundred chemicals were tentatively identified in indoor air of thehome-for-the-elderly. Comparison of night-day levels were made. The new office building was also part of a longitudinal study which revealed a rapid decrease in levels with time for some chemicals (after completion) while others increased.
Examines the effects of smoking rate, ventilation, surface deposition, and air cleaning on the indoor concentrations of respirable particulate matter and carbon monoxide generated by cigarette smoke. A general mass balance model is presented which has been extended to include the concept of ventilation efficiency. Following a review of the source and removal terms associated with respirable particulates and carbon monoxide, we compare model predictions to various health guidelines.
Notes that the Department of the Environment is considering the implications of imposing limits for the maximum annual dose of radiation to which occupants of existing and new homes should be exposed, as recommended by the Royal Commission on Environmental Pollution in its report of 1984. Describes radon's properties and origins in buildings, where levels are at least ten times higher than outdoors. The occupants of some homes, chiefly on granitic soils, receive up to 100 times the national average dose from radon. Explains the units used when discussing radon.
Describes the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and rad
Simulation methods and test results are presented here to confirm projections of actual total suspended particulate (TSP) concentration levels for representative office buildings, with particular emphasis on the 0.3 to 5 micron particulate si