Eleven countries are cooperating to establish guidelines for minimum ventilation rates which are sufficiently large to meet the demand for outdoor air in buildings without unnecessarily wasting energy. The most important pollutants have been identified as: carbon dioxide, tobacco smoke, formaldehyde, radon, moisture, body odour, organic vapours and gases, combustion products and particulates. To a certain degree some of thesesubstances can be used as indicators for acceptable air quality to establish minimum ventilation rates.
Reduction of fresh air ventilation is becoming the major means of energy conservation in office buildings. Simultaneously, health and comfort problems experienced by occupants are often suspected to be a direct result of reduced fresh air ventilation. However, there is little data available on health and comfort problems experienced by occupants of buildings operated under normal ventilation rates.
Ventilation standards in buildings are receiving increased attention because of energy conservation and indoor air quality. An important example of this is the current ASHRAE Standard 62-1981, "Ventilation for Acceptable Indoor Air Quality." This standard contains two distinct procedures that can be used to set ventilation rates. The first is a prescriptive specification that mandates ventilation rates for particular building types. The second is a performance specification that uses target concentrations of indoor contaminants as the basis for deciding the adequacy of ventilation rates.
In Finland there are not yet any regulations or standards concerning the airtightness of buildings. Drafts have caused discussion about whether controlled airtightness would increase the building costs too much, and improved airtightness worsen the indoor air quality. In modern Finnish buildings a good or satisfactory airtightness can be achieved with normal careful workmanship. To secure good indoor air quality, a functioning ventilation system is also necessary. There seems to be no return to traditional 'breathing' structures and natural ventilation.
An investigation of the minimum fresh air supply per person required to prevent the occurrence of unacceptably offensive odour due to stale air in offices and similar buildings. The study was made under everyday conditions as far as possible, in different buildings, various size rooms, different densities of occupancy, with men or men and women, and with mechanical or natural ventilation.
One option of reducing residential energy consumption is to improve air tightness but adequate ventilation must be provided for health reasons. Sources of infiltration and factors affecting infiltration rates are described, with methods for quantifying and comparing rates. The relationship with air quality is explained and the effect that air quality has on respiration and health. Typical indoor pollutants are carbon monoxide, carbon dioxide, nitrogen oxides, radon and radon progeny, formaldehyde gas, particulates, tobacco smoke and odours.
The minimum fresh air requirements needed for perfect indoor air quality are being studied and these will form the basis of the Swiss Guidelines for Ventilation. An optimization between the need to reduce heat loss and fresh air requirements for health is the aim. Pollutants in indoor air, such as formaldehydes, radon, carbon dioxide, tobacco smoke, carbon monoxide, nitrogen dioxide and particulates, have to be considered.
Diffusion-type passive monitors were placed for a two-week period in each of 303 residences in the New Haven (Conn.) area during a 12 week sampling period January to April 1983. For each home NO2 levels were recorded outdoors, and in three ro
Notes the increased attention being paid to "sick buildings" of the irritating type. Occupants complain of deteriorated indoor air and subtle medical symptoms that may be related to the indoor air. The problem seems to coincide with energy economising. To evaluate the actual quality of the air in a building it is necessary to conduct field studies with mobile investigation units, taking representative air samples for immediate sensory and chemical analysis.
Describes the work of the Department of Climate and Building Services of the National Swedish Institute for Building Research. Full scale trials, field measurement and measurement technology and methods applied to indoor climate are described. Research on airtight buildings, radon, air quality and efficient ventilation, occupant requirements and effects on human performance is also summarised. Dummies are used to measure heat transport to or from parts of the body, and for measurement of humidity.