The superinsulated home book.

Outlines the fundamentals of insulation and airtightness, proper air quality, and ventilation. Presents details of design and construction for walls, roofs, foundations, windows, and air-vapour barriers, as well as discussions of ventilation systems, heating systems, appliances and methods of testing and evaluation. One of the appendices gives weather data for selected US and Canadian cities. Aims to be accessible to the interested layperson or homeowner.

Minimum ventilation rates as a function of the use and frequency of use of rooms. Mindestluftwechsel in abhangigskeit von nutzungsart und -intensitat.

From a hygienic viewpoint, optimum indoor air quality can be characterized as the complete absence of pollutants. The most important sources of such pollutants are reviewed, including those entering a room from outside, those generated by human activity and those emanating from various materials. Thebasic requirement is for all emissions to be as low as possible. For CO2 and formaldehyde the existing standards are reasonable. For most of the other substances it is not recommended to define tolerable limit values since such definition may decrease the efforts to attain a zero level.

Indoor air quality environmental information handbook: combustion sources.

This environmental information handbook was prepared to assist both the non-technical reader and technical persons, such as researchers, policy analysts, and builders/designers, understand the current state of knowledge regarding combustion so

Indoor air quality in tight houses: a literature review.

Reviews literature on indoor air quality in housing, nature of contaminants and their sources, health effects, standards and guidelines, impact of air sealing on indoor air quality, sources of uncontrolled air leakage, airtightness and natural ventilation, airtightness of new and existing housing stock, air change in new and existing housing, impact of air sealing on airtightness and ventilation, indoor air quality in tight houses, impact of occupant behaviour on ventilation, measures to improve indoor air quality, identifying problem houses, indoor pollution control strategies, and ventila

Personal exposure to respirable particles: a case study in Waterbury, Vermont.

A study to assess personal exposure to respirable particles was conducted during January to March 1982 in Waterbury, Vermont. 48 non-smoking volunteers carried Harvard/EPRI personal samplers every other day for two weeks. 

Effects of residential wood combustion on indoor air quality: a case study in Waterbury, Vermont.

An indoor/outdoor monitoring study was conducted during January to March 1982 in Waterbury, Vermont. Respirable particle measurements were made inside and outside 24 homes (all occupants were nonsmokers), 19 with wood-burning appliances and 5 without. Data were also obtained on seasonal air exchange rate, heating fuel consumption, and relevant home characteristics. Findings indicate that indoor particle levels are consistently higher than outdoor values regardless of heating fuel type.

Results of a forty house indoor air pollutant monitoring study.

A study was conducted in 40 homes in the areas of Oak Ridge and West Knoxville, in the summer and winter months, to quantify concentrations of COx, NOx, particulates, formaldehyde, and radon, as well as selected volatile organic compounds. 

Indoor air quality/air infiltration in selected low-energy houses.

Indoor air quality and air infiltration were measured in 16 low-energy Californian houses. Eleven houses had gas stoves: all had average infiltration rates of 0.5 h to the -1 or less, recent construction dates, low natural ventilation, and no mechanical ventilation.

Important design considerations for residential indoor air quality studies.

With recent advances in technology, choices among measurement strategies for indoor air quality investigations have become increasingly complex. Design must weigh objectives and available technology against resources to implement the design. This paper provides a systematic framework for making proper choices among critical design alternatives. Design considerations include types of instrumentation, location of probes, and number and frequency of measurements. Examples drawn from case studies will be presented to illustrate these considerations.

Indoor air quality as a part of total building performance.

An indoor air quality investigation of a 60,000 m2 8 storey government office building was carried out as a part of an in-depth study of the Total Building Performance of the building. The transdisciplinary study included the following areas of building performance: lighting, acoustics, thermal comfort, ventilation, energy use, air circulation, air quality, occupant comfort, building envelope thermography, functional use and enclosure integrity. The air quality conclusions generic to large offices are presented.

Pages