Presents a compact control system of modular construction, developed in the Netherlands, which incorporates in one unit the functions of air circulation and ventilation, heat recovery and heating. It conforms to the German health and building regulations and operates with any fuel. In 1983 it was installed in 6000 new, highly-insulated Dutch dwellings and in another 10000 dwellings in 1984. Operating costs are 700-800 florins/year for heating a living area of 110m2. Future models may include water heating.
Describes four ventilation options for a 3-4 person dwelling of 100-140 m2 living area. These are: a simple transverse system conforming to State (Land) building regulations, a shaft system conforming to Standard DIN 18017 (old design), a central heat recovery based system conforming to Standard VDI 2088, and a central heat recovery/heat pump system. Presents the energy balances of the four systems with the aid of energy flow diagrams.
Discusses the problems arising from inappropriate ventilation in highly-insulated flats and houses: outlines the advantages of ventilating systems with heat recovery as a possible solution. Deals with the advantages of combined ventilating and space heating installations including those which can blow air directly into bedrooms.
Discusses the various measures used to achieve the energy-conservation aims of the Federal Republic of Germany thermal insulation regulations of 1 January 1984 and to counter the health problems that arose as a result of higher fuel prices leading to reduced domestic fuel consumption in conjunction with poor ventilation. Discusses the advantages of installing heat recovery based central air conditioning systems with filters which are eligible for tax relief.
The determining parameters for the formation of condensation are 1) the surface temperature of the building section and 2) the dew point temperature of the air in the room. Thermal bridges in intensively insulated outside walls and decreased ventilation due to tighter windows both increase the risk of condensation. Mechanical ventilation reduces the risk, but natural ventilation is dependent on occupant behaviour.
This report examines three devices (exhaust fan, air-to-air heat exchanger and exhaust air heat recovery heat pump) which could be used to increase the ventilation rate of a tightly constructed house to a level sufficient to keep indoor air pollutants and moisture to acceptable concentrations.
Discusses the future prospects of domestic ventilation and whether mechanical ventilation will be necessary to satisfy requirements as windows become more airtight. Suggests use of centralized mechanical ventilation, with openable windows for summer ventilation.
The filtering effects of three types of air control systems at two wastewater treatment plants on viable particles were investigated. Aspergillus fumigatus and other thermophilic organisms were used as monitors for viable particles. The indoor concentrations of viable particles were found to be affected by building design and the use of conventional mechanical air systems. Viable particles of approximately 4.0 microm and greater in aerodynamic diameter were filtered from the air while respirable size particles less than 4.0 micromwere not filtered as well.
Mechanical ventilation systems in large office buildings are designed to meet space conditioning loads and to maintain acceptable indoor air quality. In order to achieve acceptable air quality, the ventilation systems are designed to bring in a mlnimrm amount of outside air whenever the building is occupied.
Air exchange rates were measured in the National Archives Building under various combinations of temperature and wind speed. The average air exchange rate under normal operation of the HVAC system was 0.9 h-1 for an average temperature difference.