Velocity and temperature prediction in an office room with furniture.

The paper presents results from the numerical modelling of the flow field in an existing ventilated office room. The numerical procedure is based on the 3D Reynolds equations closed by the k-e turbulence model and an equation for temperature solved by the finite volume method. The boundary conditions are set in accordance to detailed measurements of the velocity distribution in the air supply diffuser. The established complex flow conditions in the room, which are due to the presence of furniture and buoyancy forces, are presented.

An intermediate model to predict thermal comfort and air quality in a building.

In this paper, a zonal model used to predict the air movement, temperature distribution and airquality in a room is presented. It is based on a rough partitioning of the room: it is anintermediate approach between one-node models (that consider an homogeneous temperaturein each room, and, for that reason, do not permit to predict the thermal comfort in a room) andCFD models (that require great amount of simulation time). Where plumes, jets or thermallayers occur, air flow is described by empirical laws.

A method for prediction of room temperature distribution.

The heat sources in a room with upward air supply, can be ideally decomposed into some basic models. Based on searching of the solution of the basic models, then solving the varieties of practical problems, a simplified method for predicting vertical temperature distribution of room air is submitted in this paper. Calculated values of some practical examples agree satisfactorily with experiment results.

A comparison of predictive techniques for natural displacement ventilation of buildings.

Previous work by Linden, Lane-Serff and Smeed (1990) has developed a simple mathematical model for natural displacement ventilation of an enclosure. The work also introduced the experimental salt-bath technique, which uses salt solutions and fresh water to generate buoyancy forces that are analogous to those found in naturally ventilated buildings. The work claims that a good correlation exists between the predictions of the simple mathematical model and the results obtained using the salt-bath technique.

Predicting the position of the smoke layer interface height using NFPA 92B calculation methods and a CFD fire model.

NFPA Standard 92B presents computational methods for determining the position of a smoke layer in a large-volume space. Although NFPA 92B is a guide to smoke management design, the methods have been adopted, with certain modifications, by model building codes and are mandated for use in atriums and large-volume spaces. This paper makes use of a recently developed CFD fire model to assess the NFPA 92B calculation methods. A total of 13 simulated tests were conducted.

A lighting, thermal and ventilation (LTV) design tool for non-domestic buildings in tropical and subtropical regions.

The paper reports on progress to date on the development of a model for predicting energy use and the effect of conservation strategies in non-domestic buildings in the tropic and subtropics. This model considers lighting loads (L), both artificial and daylight, thermal loads (T) and ventilation effects (V). It is hoped, that when completed in late 1998, the model will provide a Lighting, Thermal, and Ventilation (LTV) advocacy tool for use in the early stages of the design processes of engineers and architects. This will provide vital feedback to the early design decisions.

Pages