Discusses use of an instrumented energy audit, as opposed to a walk-through audit. Describes use of the audit to pinpoint infiltration sites. Method used is to depressurize a building and use thermography to locate air leaks. Briefly describes equipment and gives example of an instrumented audit of a residential building. States advantage of instrumented audit is that it gives a quantitative energy analysis as opposed to a qualitative one.
Presents the results from a major airtightness survey carried out in Norwegian dwellings. 61 detached houses and 34 flats were pressure tested. In 14 of the detached houses and 6 of the flats, leakage paths were traced using thermography. Gives tables of results. Lists most common leakage paths located by thermography. Occupants of the dwellings were interviewed about draught problems, but there was no clear correlation between occupant dissatisfaction and leakage rate. Notes a considerable variation in leakage between the houses.
Reports measurements of air infiltration and leakage using tracer gas and the pressurization technique in a three bedroom townhouse having a gas-fired forced-air furnace system. The measurements were made in order to quantify the amount of infiltration due to various mechanisms.
Describes use of thermography by Fishburn Thermography group ltd. Outlines use of camera and isotherm function. Suggests use of thermography for the detection in walls of heat losses, thermal bridging, wet or inadequate insulation, air infiltration and other defects.
Reports the use of thermography for evaluating the effectiveness of a number of different retrofit measures carried out on single family dwellings in Twin Rivers. Discusses the use and limitations of thermography. Gives thermograms of parts of the houses before and after retrofit. Finds thermography is an effective tool for evaluating these retrofit measures which decreased the energy consumption by about 25%.
Discusses in general terms energy consumption and energy requirements and the testing and checking of buildings. Gives principles of thermography and discusses the influence of various parameters on the thermography of buildings. Gives rules for interpretation of thermograms and use of comparative thermograms. Gives examples of comparative thermograms for common defects in insulation and airtightness, and actual cases where certain constructions and components were examined. Shows effectiveness of improvements made to remedy certain types of defects in insulation and air tightness.
A comprehensive manual describing theory and techniques of thermography as used to determine insulation defects in buildings. Describes operation of infrared camera and theory of interpretation of thermograms. Provides practical rules for field work and discusses possible sources of error. Concludes with 56 page catalogue containing over 700 typical thermograms, many in colour, illustrating four wall types built a) strictly according to specifications and b) with common structural and insulation defects.
Reports tests made on a mobile home to evaluate its thermal performance. Describes home, instrumentation and test procedure. Gives energy consumption as a function of indoor-outdoor temperature difference. Finds that oversized heating plant resulted in low seasonal operating efficiency. Air infiltration was measured using pressurization technique and SF6 as a tracer gas. The latter showed that operation of the heating plant induced higher air infiltration rates. Reports thermographic survey of interior surfaces which showed air paths formed by wrinkles in the surface insulation.
Describes operation of thermal imaging cameras with a display monitor detecting infra-red radiation. Since temperature differentials of 0.20C are significant for insulation of buildings, camera must be used to limits of its sensitivity and monitoring procedure must be carefully chosen. Treats measurement limitations in field of building. Uses details of thermographic surveys to illustrate some difficulties of measurement and analysis. Emphasises importance of correct inspection procedures for particular situation.
Treats methods of determining energy losses in a building given in 1975 swedish building regulations. Presents findings of a number of measurements using pressure method and thermography carried out during 1977 and winter of 1978. The apparatus and methods have been developed for field work. Presents results which depict different grades of airtightness in different types of building. Discusses use of thermography, which has been extensively used in recent years in Sweden in particular for new buildings. States method has been developed to become subject of a swedish standard.