Requirements for new buildings including large residential buildings are given and cover illumination, exterior envelope, heating, ventilation and air conditioning, service water heating, transportation, freeze protection and energy management. Systems analysis for energy conservation design is discussed. These recommendations are compared with ASHRAE/IES standard 90A-1980.
Notes the considerable savings in heating energy that could be made if ventilation rates could be modulated so that only the requirements of the actual number of occupants was supplied. Explains how this can be done by ventilating to maintain a constant concentration of carbon dioxide. Describes carbon dioxide monitoring system based on infrared absorptiometry. Illustrates diagrammatically the layout of a cinema ventilation system which monitors carbon dioxide levels and explains its operation. Notes other buildings where the system is used.
Evaluates the space-conditioning energy conservation potentials of landscapes designed to ameliorate building microclimates. The physical bases for vegetative modifications of climate are discussed, and results of past study of the effects of vegetation on space-conditioning energy consumption in buildings are reviewed. The state-of-the-art of energy-conserving landscape designs is assessed and recommendations are presented for further research. Landscaping mobile houses and single family dwellings is considered.
Due to better insulation and improved airtightness of doors and windows, the supply of fresh air entering a room has been greatly reduced. This in turn causes an increase in the amount of pollutants emitted by different insulation and building materials. Measurements of the formaldehyde concentration in newbuildings have shown that the admissible limits are still exceeded even after a year. Stricter regulations limiting the emissions of pollutants are therefore urgently necessary.
Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating showed no significant increase in concentration over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's 10 CFR 20 limit of 3 pCi/l for continuous exposure. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal.
States that the future belongs to light building structures which have been well insulated. A decided improvement may be achieved by windows, which must become an active element in the facade for air extraction. Air heating is considered. With ever decreasing heat resources, the division of heat flow mechanisms into basic inert and fast-control peak heating, is no longer an economical approach.
A minimum ventilation rate of 25 m3 per person per hour or 1.5 air changes per hour for homes in the Netherlands is discussed. Difficulties in stimulating awareness of adequate ventilation amongst residents in homes with low ventilation rates of 0.5 to 1 ach is covered.
The above new building is described. Main features of this building are shade from trees, south windows catch the breeze in summer and insolation in the winter, insulated foundations, roof and wall insulation, solar collectors toprovide all hot water heating and 75% of space heating, thermally massive walls to stabilise temperature, various natural ventilation and air conditioning options, and storm windows. Energy consumption details are given.
Radon concentrations were measured in about 1000 Dutch dwellings and at 200 outside locations using passive monitors. A median concentration of 24 Bq/m3 was found for the dwellings with a highest value of 190 Bq/m3. Seasonal effects were found to be small. Correlations were observed between median radon concentrations and construction parameters including ventilation rate. The concentrations outside show an unexpected dependence on the location. Comparison with previous grab-sampling data on radon-daughter concentrations reveals an average equilibrium factor of 0.3.