This report is a guide to give the canadian builder practical information in the area of energy conservation in new housing. Offers useful suggestions for planning, designing and building a more energy efficient home. Sections covered include energy use in dwellings, air tightness, ventilation andmoisture control, options for improving the building shell, space heating and cooling systems, and cost considerations. Takes the 1979 Ontario Building Code as the basis upon which to develop and evaluate improvements.
Many mechanically ventilated buildings are over-ventilated since ventilation rates are based on a fixed number of people (often in excess of the average occupancy) and no allowance is made for infiltration. States that the CO2 concentration in the ventilated space can be related to the ventilation rate per person, and by modulating the fresh air flow to maintain a constant CO2 concentration, a constant ventilation rate per person can be obtained.
Reviews a research project which has the objective of establishing:< 1. Expressions for ventilation efficiency< 2. Methods for measuring ventilation efficiency< 3. Rules for acheiving efficient ventilation.< Derives expressions for ventilati
TNO Research Institute for Environmental Hygiene have developed a mathematical model (based on an electrical analogue model) for deciding on the best ventilation system (natural v. mechanical) for a building while it is still atthe design stage. This model has been applied to an auction complex situated at Bleiwijk to deduce the best ventilation system for the building. Conclusions are that a natural ventilation system can be realized by placing ventilating devices exclusively in the roof.
In a modern residence with reduced air infiltration, a problem may arise if the fresh air requirement is left to natural leakage. The article discusses this problem, and describes techniques for measuring air leakage and typical results. The contaminants which define the need for ventilation are described and the case for controlled ventilation systems (and possibly heat recovery devices) is made. Areas for further research are recommended.
States that the reduction in energy losses due to reduced air infiltration is often overestimated because the effect of open windows is not taken into account.< Shows that the habits of airing are rather similar in some European countries. The proportion of windows open or ajar is inversely proportional to the indoor- outdoor air temeperature difference over a large interval of this temperature difference.< The proportionality constant seems to take a value that is independent of the building construction or the heating system of the residential building.
Measures air infiltration and tightness of Swedish houses using the tracer gas technique and the fan pressurisation technique. Uses a previously developed model correlating air tightness and infiltration to evaluate the performance of Swedish homes. Shows that it is difficult to achieve the recommended minimum ventilation rate according to the Swedish Building Code by relying on natural air infiltration. Most new homes do, however meet the Code's stringent air tightness requirements. A comparison with American houses show that Swedish homes are very tight.
Presents the latest results of air infiltration research in Finland. The aim is to increase the knowledge of the influences of air infiltration on energy consumption, ventilation and indoor climate. Briefly describes the principles of a calculation model for predicting the interconnection between airtightness and air change rate. Describes improvement of air tightness in Finnish buildings, with special attention to construction details. Discusses possibilities of draughtless and controlled fresh air intake through the building envelope.
Reports on a comparative study of residential infiltration as predicted by computer model and as measured in the Mobile Infiltration Test Unit (MITU) as well as in selected test houses, both occupied and unoccupied. Sensitivity analyses were also conducted on each parameter contained in the model against data obtained from MITU.