Describes wind tunnel study where both static and dynamic, local and spatially distributed loads have been measured for a variety of representative low-rise building geometries. Determines experimental pressure coefficients for the interior of buildings with various porosities and wall openings. Describes the assumptions made to reduce the large quantities of data to a small set of simplified pressure coefficient charts appropriate for use in a code or standard.
Reports on a comprehensive wind tunnel study of low-rise buildings at the University of Western Ontario, aimed at the definition of simple code specifications for the wind loading of such buildings. Describes an innovative technique for determining spatially-averaged time varying wind loads over various tributary areas of a structure. This data has been processed by computer to produce a time-history of more generalized loadings. Measurements have been carried out in turbulent flow conditions characteristic of thenatural wind.
Covers the theory, economics, and practice of draughtproofing existing buildings. The theory section deals with methods of calculating and measuring ventilation losses. The economics section covers financial costs and benefits, while in the practical section various methods of draughtproofing are categorized and described together with their advantages and disadvantages.
Makes general suggestions for future buildings and their ventilation methods with the aim of creating improvements to avoid the faulty design of the 1960's with their high energy consumption. Considers the characteristics of natural ventilation and mechanical ventilation with respect to ventilation heat loss. Recommends the use of `ventilation on demand' for bathrooms, w.c.'s and kitchens using individual extract ventilation units for each room.
Considers the reasons for advocating mechanical domestic ventilation. Discusses which factors provide for an optimum climate in rooms. Treats room temperature, air movement in the occupied zone, air purity and humidity, odours, noise. Illustrates how mechanical ventilation should be arranged to provide correct indoor ventilation and the different ventilation principles involved: gravity ventilation, fan-assisted exhaust ventilation and supply and extract ventilation. Illustrates typical applications of these systems to single family houses.
Reviews the development of methods and results achieved. The methods have resulted in a proposal for a Nordic test method for measuring ventilation efficiency (local air change frequency) using tracer gas techniques and measurements carried out for two different ventilation systems.
Reports on research project to study the effects of different methods of heating an office, temperature and draught conditions, ventilation efficiency and heat storage in joint structures. Gives test room digramatically and tracer gas concentration under different conditions, both during summer andwinter.
Describes a variation of the conventional tracer gas measurement technique for measuring air change rates. Gives theoretical analysis of measurement results simulated with a computer for a complex system of six rooms where natural ventilation is measured in one case and fan-arrested ventilation in thesecond. Results from computer simulation are a measure of fresh air ventilation and not of a room's total air change rate. Diagrams illustrate assumed distribution under both conditions.
The primary aim of the project is to describe and document a measurement method suitable for checking whether minimum requirements for ventilation efficiency are fulfilled after a ventilation system has been regulated. The project concentrates on occupied areas with mechanical ventilation such as dwellings,offices and schools. Excludes industrial buildings since special conditions such as ventilation rates, polluting processes and local extraction apply to these. Defines ventilation efficiency, describes equipment and measurement with CO2, N2O, SF6, Kr85.
Describes the use of SF6 tracer gas measurement techniques employed in airtightness and ventilation research at Princeton in terraced housing. Notes use of measurement results for constructing models describing the total adventitious ventilation in a house. Refers also to similar techniques used in research at Berkeley in single family dwellings.