Looks at the requirements for computer model validation, especially in regard to predicting energy usage in buildings. Discusses the IEA project for comparing and validating several computer programs in this context. Describes the Glasgow commercial building monitoring project, which includes detailed measurement of temperature and air flow rates to provide data for model validation. States what type of data is needed for validation.
Presents the results of an investigation carried out on behalf of the Swiss Ministry for Environmental Protection. The main aims were to find acalculation method for the annual energy demand of a building which takes into account solar heat gain and which generates data permitting the effect of thermal protection regulations on energy consumption to be evaluated. Treats the effect on transmission heat loss of outside walls of absorbed solar radiation, the specific heat loss of typical dwellings, reference years based on weather data for energy consumption calculations.
Presents the latest results of air infiltration research in Finland. The aim is to increase the knowledge of the influences of air infiltration on energy consumption, ventilation and indoor climate. Briefly describes the principles of a calculation model for predicting the interconnection between airtightness and air change rate. Describes improvement of air tightness in Finnish buildings, with special attention to construction details. Discusses possibilities of draughtless and controlled fresh air intake through the building envelope.
Investigates the effect of energy-saving measures by selecting a large number of multi-family and single-family swedish houses where such measures have been carried out. Energy saving methods include insulation of external walls and attics, triple glazing windows, and installation of radiator thermostatic valves. Concludes that these modifications have, in average, led to anticipated savings when they have been modified individually. Also considers moisture problems arising in retrofitted houses, and the effectiveness of different types of weatherstrips in energy conservation.
Reports on an investigation concerning ventilation and energy conservation in dwellings, which was financed by the EEC and the Dutch Ministry for Housing and Public Works. Concludes that:< 1. In single family houses air flow through cracks and joints causes more ventilation then is required.< 2. Flats with more airtight construction provide better control of ventilation.< 3. The amount of wind protection plays a part as important as airtightness.< 4.
An energy saving survey was carried out in an office building in Stockholm during the autumn of 1978. The measures which were proposed are now being carried out. This report details the measurements made which include, airtightness testing of the building, pressure drops across facades, air flow measurements, temperature measurements in ventilation systems, temperature measurements in rooms, boiler combustion efficiencies, electricity consumption, oil consumption and thermographic inspection.
Reports heat loss measurements made in an unoccupied house at Kenmay, Scotland. Gives constructional details of this well-insulated house. Reports measurements of energy and temperatures over two heating seasons and short term measurements of ventilation by tracer gas decay method. Finds natural ventilation rate of 0.25 air changes/hour and attributes this to low windspeeds. Compares calculated value of fabric heat loss with measured value and finds good agreement. Finds type of system used, either convective or fan heating has not affected the measured heat loss.
Reports study of the energy consumption and ventilation requirements of typical existing public schools in New York. Electricity and fuel-oil consumption data from May 1970 to April 1973 from 19 schools were analysed.
Gives results of a statistical survey of energy consumption in British government buildings. Suggests one reason for high consumption may be excessive ventilation. Reports field trial of the effect of reducing natural ventilation in a London office building. Window frames were sealed with a rubber mastic, giving an annual fuel saving of 22%. Finds measure was highly cost effective with a payback period of less than three years.< Discusses problem of heat loss through large doors in hangars and workshops.
Reports a study carried out to assess whether homeowners occupying more highly insulated houses have actually realised fuel savings over those realised by comparable homeowners in less heavily insulated houses. Describes method of the survey which included air leakage tests.