Concentrations of airborne formaldehyde in modern dwellings with low rate of ventilation

Formaldehyde concentrations and ventilation rates in Finnish housing were measured. Results are discussed with reference to the recommended minimum ventilation rate of 0.5 ach.

Urea-formaldehyde foam cavity wall insulation. Reducing formaldehyde vapour in dwellings

Methods discussed include ventilation, excess foam removal and sealing accessible gaps.

Indoor air pollution by building materials

Due to better insulation and improved airtightness of doors and windows, the supply of fresh air entering a room has been greatly reduced. This in turn causes an increase in the amount of pollutants emitted by different insulation and building materials. Measurements of the formaldehyde concentration in newbuildings have shown that the admissible limits are still exceeded even after a year. Stricter regulations limiting the emissions of pollutants are therefore urgently necessary.

Volatile organic levels in indoor air

Volatile organic chemicals in indoor air of a home-for-the-elderly and a new local government office building were identified and quantified using Texax GCR samplers and capillary gas chromatography/mass spectrometry analysis. Over three hundred chemicals were tentatively identified in indoor air of thehome-for-the-elderly. Comparison of night-day levels were made. The new office building was also part of a longitudinal study which revealed a rapid decrease in levels with time for some chemicals (after completion) while others increased.

Formaldehyde release from building products

During the last fifteen years Urea-Formaldehyde (UF) bonded particle board, medium density fiberboard and plywood have replaced whole wood as a construction material for flooring, wall panelling cabinet work and furniture. At the same time,

An evaluation of formaldehyde sources exposures and possible remedial actions in two office environments

In response to employee complaints of upper respiratory and eye irritation, formaldehyde air sampling studies were conducted in two different office environments. The first was in a series of temporary modular buildings with construction simi

A comparison of an automated continuous formaldehyde analyser with passive dosimeters

A microprocessor-controlled, five point, all-teflon sequential air sampling system interfaced to a continuous formaldehyde analyser, the CEA model TGM 555 Air Monitor which uses the pararosaniline colorimetric method was used tomeasure the seaso

Air quality control strategies for health, comfort, and energy efficiency

Within the last ten years, energy shortages, economic pressures, and changes in indoor environmental requirements have resulted in buildings that are more energy efficient but less forgiving, environmentally. These results indicate that energ

A method to select locations for indoor air quality sampling.

A rational method is presented to determine the locations within a building where the highest average concentrations of contaminants may occur. Using this procedure, the number of sampling points necessary for indoor air quality (IAQ) evaluation of a building is reduced to a minimum. Thus the time and cost necessary for building evaluation and analysis can be decreased. Experimental measurements made in a research house are presented to validate the method.

Comfort in dwellings and workplace. Behagliches klima in Wohnund Arbeitraumen.

States that although the conditions for a comfortable climate are well known - especially temperature and air humidity - increased concern with energy conservation means it is important to discover what effect energy conserving measures have on the health,well-being and efficiency of people. Pressing questions are - how far can room temperature be lowered without affecting comfort and how is room air quality affected by a lower air change rate or a reduced fresh air supply. Summarises recommended room temperatures for various levels of activity.

Pages