MVOC out of new materials

Especially in new buildings we could find striking concentrations of MVOCs and we couldnot localize mould damage. We first supposed that some MVOC components are not specificfor microorganisms but normal VOC from new materials. But very often the mould dogmarked walls and floors spacious in new buildings where we detected MVOC in the indoorair.To obtain information if new materials contain microorganisms, we analysed gypsumboard, Styrofoam and mineralic insulation material for fungi and bacteria that we purchasedin three different hardware stores.

Field measurement of formaldehyde in government offices

This paper discusses research conducted to determine the status of indoor air chemicalpollution caused by formaldehyde in government offices in 2001. This research involvedmeasurements of formaldehyde concentration and questionnaires on the office rooms inapproximately 300 buildings.

The new European information system (EIS-CHEMRISKS) for assessing exposures from consumer products in the indoor environment

Information is needed about the overall nature of the reasonably foreseeable exposures fromconsumer products, including intended exposures of chemicals released into the air by design(e.g. fragrance materials), and other inhalation, dermal, and oral exposures arising from theuse of consumer products (CPs) in the indoor environment.

Dimensioning of soil depressurization system for radon remediation in existing buildings

The aim of this study is to help dimension the Sol Depressurization System against radon inexisting buildings.First, various remediation techniques implemented on existing buildings are comparedregarding the reduction of indoor radon concentration. The results show that techniques thatdeal with basements have generally the best efficiency and in particular the SoilDepressurization Systems.In situ test equipment has been developed in order to dimension these systems. It has beenused on different basements such as crawl spaces and cellar.

Role of volatile organic compounds in residential interior air pollution: a study

The indoor environment is dynamic in nature, in particular, because of various emissionsources contributing with volatile organic compounds (VOCs). Indoor air pollution is aconsequence of increased use of synthetics as building materials, cleaning and renovation ofbuilding process, constructing airtight buildings to reduce energy costs and inadequateventilation efficiency. VOCs are ubiquitous in indoor air and by far the largest group ofpollutants.

Survey on the VOCs concentration in hospitals using a passive sampler method

VOCs concentration measurements in six hospitals were conducted, using passive samplers,in order to get outlined information on the IAQ. Most of the toluene, xylene, ethel benzeneand styrene concentrations obtained from 158 points were lower than the detected limit.Concentrations of formaldehyde and toluene measured at each point exceeded the guidelinevalues. Concentration of xylene obtained from two points also exceeded its guideline value.TVOC concentrations by in-depth measurements obtained from 53 points out of 55 werelower than the determination limit, 200g/m.

An integrated zonal model for predicting airflow and VOC concentration distributions in a room

An Integrated Zonal Model was developed to predict the three-dimensional airflow andcontaminant concentration distributions in a room. This model integrated a zonal model withmaterial emission/sink models. This Integrated Zonal Model was applied to a mechanicallyventilated room to simulate airflow pattern and VOC concentration distributions. Results werecompared with prediction made by a CFD model. It was found that the Integrated ZonalModel could provide sufficiently reliable results and some global information regardingairflow pattern and VOC distributions within a room.

Combined air, heat, moisture and VOC transport in whole buildings

Thermal and moisture performances of whole buildings are rather well understood today andvarious models exist for simulating those. However, models for calculating VOC emissionsfrom or through building envelope parts are still rare and often need specific materialproperties for each transported compound.

Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air

The results of an investigation into the capacity of the indoor potted-plant/growth mediummicrocosm to remove air-borne volatile organic compounds (VOCs) which contaminate theindoor environment, using three plant species, Howea forsteriana Becc. (Kentia palm),Spathiphyllum Schott. Petite (Peace Lily) and Dracaena deremensis Engl. Janet Craig arepresented. The VOCs selected were benzene and n-hexane, both common contaminants ofindoor air.

A pilot study to identify semi-volatile organic pollutants in residential house dust

Semi-volatile organic compounds (SVOCs), emitted from building materials and othersources in the indoor environments, are likely to be bound to particulates due to theirrelatively low vapour pressure. While toxic metals and biological pollutants in house dusthave been investigated in several studies, little work has been done to detect SVOCs. In thispaper, the preliminary results on the screening of SVOCs in house dust in selected sixresidential homes are presented. The dust particles (

Pages