An accurate determination of air renewal rate and connective exchanges between units was needed for study of the solar units of the experimental building LESO, in both an occupied and empty state. The CESAR compact equipment for tracer gas (nitrous oxide) measurement was developed. This unit uses a microcomputer to perform a simultaneous and periodical gas analysis in 10 locations. Three tracer gas methods can be used: decay, constant concentration, and continuous flow. The device and regulating program work well with low rates of concentration (100ppm of nitrous oxide).
This report discusses the extension of an infiltration predicting technique to the prediction of interroom air movements. The airflow through openings is computed from the ASHRAE crack method together with a mass balance in each room. Simulta
Continuous monitoring of NO, NO2, CO, CO2, and O2 depletion was conducted in 14 residences (13 with kerosene space heaters and one without) in two locations in the residence (room with the heater and bedroom) and outdoors. The continuous monitor
Indoor air quality sampling strategies and analytical techniques have changed significantly in the past ten years. The changes reflect both the shifts in study objectives and the development of new forms of instrumentation. Toillustrate these trends, this paper describes early field techniques for measuring indoor air quality using a heavily instrumented mobile laboratory that is suitable for measuring one building intensively for up to four weeks.The style of measurement now is complemented by large field survey projects using passive samplers as the dominant instrumentation.
A discussion of different approaches to indoor air pollutant monitoring is presented. Indoor sampler design criteria are outlined. Grab samplers, personal samplers, passive and single-use devices, and in-situ measurement instruments are compared to novel, syringe/adsorbent tube samplers. These instruments provide automated, sequential, time-averaged collection of avariety of indoor pollutants, including hydrocarbon/halocarbon organic vapours, CO, CO2, HCOH, tobacco smoke, combustion and odorous mixtures, and particulate matter. In addition, the samplers can be used in infiltration studies.
Reports the result of investigation of the impact of various operational factors on trace combustion products emission rates from unvented gas appliances including ranges and space heaters. The impact of the following factors on the indoor NO, NO2 and CO emission rates were evaluated under controlled conditions in an environmental chamber - 1) the appliance typeand/or design, 2) the primary aeration level, 3) the fuel input rate, 4) the time dependence of emission rates, and 5) the presence of absorbing surfaces such as wood, plaster board, curtains, carpets, linoleum and plaster.
Building design and building construction technology has improved in the past decade and the concern over indoor air pollutants and their health effects has increased. A multi-point, multi-pollutant air sampling and analysis network was insta
As our understanding of human exposure to air pollutants improves, it is becoming increasingly evident that indoor environments play a critical role in determining exposures. However, it is not possible at the present time toestablish the relative contribution of indoor and outdoor sources to personal exposures, nor can the contribution of specific indoor emissions be quantified. To address these issues, a chamber experiment was initiated to measure particulate and organic emissions from important indoor sources.
A pilot study was conducted using workers from a semiconductor plant. Describes the methods used to acquire and evaluate air pollution exposure data for significant environments (including workplace, in-transit, and residence) to which workers are exposed throughout a typical 24-hour day. Summer andwinter measurements were made on products of combustion, radon, respirable particulates, and a variety of organic compounds including methylene chloride.
In order to verify the calculation models of air infiltration using three wooden test houses which have the same type of construction but have different leakage distributions, airtightness of building components of these three houses were measured by means of the fan pressurization method, and then air infiltration was measured twenty-two times by C02 concentration decay technique.