During a field study of the thermal comfort of workers in natural ventilated office buildings in Oxford and Aberdeen, UK, we.re carried out which included information about use of building controls. The data was analysed to explore the effect the outdoor temperature has on the indoor temperature and how this is effected by occupants' use of environmental controls during the peak summer (June, July and August).
The aim of the research was to find out the indoor climate conditions in Finnish commercial kitchens by measurements and inquiries. Twelve kitchens were selected from the Helsinki metropolitan area. The measurements concentrated on thermal conditions. On the average thermal conditions in measured kitchens are not fully satisfactory and they varied considerably between the kitchens. Thermal conditions within kitchens varied also depending on the workplace. Heat stress harmful to health was only found in two kitchens.
Airflow through houses from onshore coastal breezes in warm humid tropical climates is the principal passive means of achieving indoor thermal comfort when air temperatures exceed 30°C and relative humidity exceeds 60%. Estimates of indoor natural ventilation cooling potential have been based on indoor wind speed coefficients determined from boundary layer wind tunnel tests combined with wind frequency, air temperature and relative humidity data.
The purpose of this work is to see the influence of the heat preservation in the cold season and also to show the building material influence on the indoor radon concentration in dwellings. Three methods were used to measure the radon content in houses and buildings (workplaces). The results of measurements show that in the winter season the indoor radon concentration is about 2 times higher than in the summer season for these regions from Transylvania.
In this work a numerical model that permits to simulate the human body thermal system is presented. This computational model is based on the integral energy balance equation for the human body tissue, arterial and venous blood and mass balance equation for the blood.
The purpose of this study is to identify the ventilation effectiveness of a displacement ventilation system in a concert hall with 501 seats, where a large amount of outside air is required for ventilation. Displacement ventilation was considered appropriate to reduce the amount of outside air. Light bulbs were placed on all the seats to simulate the heat source from the audience. From the measured concentrations, the local mean age of air at the breathing point with the displacement ventilation system was found around one third of that of the fully mixed condition.
In order to assess ventilation systems, ventilation and thermal comfort parameters are calculated. Parameters are temperature and ventilation efficiency and PMV I PPD. Two ventilation configurations are set: the supply grille is under the ceiling and tests are performed for 2 exhaust positions. Both are opposite the ceiling: the first one is under the ceiling and the second one is on the floor. In regards with extract position, the ventilation system is better when extract is on the floor. It appears that the air renewal does not influence neither ventilation nor temperature efficiency.
Usually, the performance of fan-coils is defined and measured in the laboratories only through thermal quantities. However, comfort conditions within a room depend also on the air flow pattern determined by the appliance. Therefore, an experimental procedure to evaluate the fluid dynamic performance of fan-coils has been developed.
In order to give some guidance for the optimization of shop entrances regarding comfort and energy savings, a project was launched by the City of Zurich. The project covers field investigations in 12 shops with different entrance types, and analytical and numerical investigations (CFD)for complementary results. The emphasis of this work was on the interaction between the situation at the entrance for different technical local solutions with other factors of importance like building ventilation, building tightness and combination with other entrances.