Knowledge of the air change in dwellings under conditions of use is a prerequisite for the calculation of energy consumption and for evaluation of a dwelling's indoor climate. Air change was measured in a total of 25 occupied dwellings over a
Summarizes the main results of the seminar: 1 interdisciplinary collaboration is necessary, 2 a direct and intensive publicity campaign is needed to influence occupant behaviour, 3 an air change rate between 0.5 and 1 per hour (in relation to the total volume of the living quarters) should comply with normal requirements, 4 a method for measuring the airtightness or air change rate for individual buildings should be developed ready for application, 5 mechanical ventilation offers the best solution, 6 there exists a need for simple ventilation fittings which can be installed in existing buil
Recent work has demonstrated the existence of daily and seasonal cycles in attic moisture parameters. Over the course of a day, the attic air humidity may vary by a factor of three, and during the course of a winter there isstorage of perhaps
The principal environmental factors that affect human comfort are air temperature, mean radiant temperature, humidity and air speed. Presents asimplified model of thermal comfort based on the original work of Fanger, whorelated thermal comfort to total thermal stress on the body. The simplified solutions allow the calculations of predicted mean vote (PMV) and effective temperature which (in the comfort zone) are linear in the air temperature and mean radiant temperature, and quadratic in the dew point, and which can be calculated without any iteration.
To measure actual air infiltration in dwellings due to the house and inhabitants it is necessary to measure continuously for several days. This can be done by the constant concentration measuring method. The measurements show that in houses with a reasonably low air infiltration rate (0.2-0.5 h-1) theinhabitant has the major impact (up to 50-75%) on the total air infiltration rate. This must be taken into consideration when designing mechanical and natural ventilation systems.
Presents the results to date of the use of the multiple tracer gas technique to determine interzonal airflow and ventilation rates in large, multicelled buildings like offices. This work is part of a wider project designed toextend knowledge of natural ventilation in all types of buildings other than dwellings.
This report presents the results of air leakage tests on polyethylene membranes installed in a frame wall. The results would be useful in evaluating the methods commonly used for installing such a component.
Errors resulting from treating a house as an enclosure surrounding a single, well-mixed volume of air are explored in detail for a ranch house with abasement. A fairly typical ventilation pattern is assumed and three quantities, the air exchange rate, the indoor pollutant concentration from a given emission, and the energy required to heat infiltrating air, are calculated and compared using both the one and two zone models for this house.In general, the errors were around 10-20% if the basement was included in the one zone models and 30-40% if the basement was neglected.